@article{oai:kpu.repo.nii.ac.jp:00005021, author = {福山, 萬治郎 and Fukuyama, Manjiro and 浦上, 弘幸 and Urakami, Hiroyuki and 飯田, 生穂 and Iida, Ikuho}, journal = {京都府立大學學術報告. 農學, The scientific reports of Kyoto Prefectural University. Agriculture}, month = {Dec}, note = {飽水木材中における2価電解質の拡散速度を検討するために, 濃度0.5mol/ℓの2価電解質7種と比較のために用いた1価電解質3種について(Table 1), 10∿40℃の条件下でヒノキの長軸(L)方向と接線(T)方向の拡散係数を測定した。測定装置や測定方法は前報のそれと全く同様で, 測定には直径5.0cm, 厚さ1.0cm(L-方向の拡散)および0.2cm(T-方向の拡散)の円板形の心材試片を用いた。得られた結果は次のとおりである。(1)木材組織に起因しての拡散係数の変動はNa_2SO_4,ZnSO_4,CaCl_2のT-方向, ならびにCuCl_2のL, T両方向において顕著であった(Table 2)。(2)拡散係数の対数と絶対温度の逆数をプロットした場合, 各電解質, 拡散方向いずれの場合も直線関係が得られた(Fig. 3)。(3)25℃の木材中における電解質の拡散係数(D_)と同温度の水中におけるそれ(D_)との間にはL, T両方向いずれの場合も放物線関係(Fig. 4), またD_と25℃の水中における陰, 陽イオンの拡散係数(D_)との間にはいずれの場合も直線関係(Fig. 5)が得られた。(4)ヒノキ飽水木材中における2価電解質の拡散速度は, 拡散通路内に存在する有効毛管の大きさとその数, 特に有縁壁孔の数に支配されるが, 拡散分子やイオンは飽水木材中を水中における場合とほぼ同様な挙動で拡散することが推測された。(5)D_をD_に比較すると, 1価電解質はL-方向で水中のそれの平均約1/2,T-方向で平均約1/50,2価電解質のそれはそれぞれ平均約1/2.4ならびに平均約1/93で, 特に2価電解質のT-方向における拡散の困難なことが認められた(Table 3,Table 4)。(6)拡散の見掛けの活性化エネルギーや平均の温度係数は, 極めて少数の例外を除いて拡散方向や電解質の種類には無関係であった(Table 5)。このことから仮道管壁に存在する有縁壁孔の数が両者の値に関係することが推測された。, The differences in diffusion rates of the bivalent electrolytes through water-saturated wood have been measured in the longitudinal (L) and tangential (T) directions of Hinoki wood (Chamaecyparis obtusa ENDL.) using seven kinds of the bivalent electrolytes and three of the univalent electrolytes for a comparison (Table 1) at a concentration of 0.5mol/ℓ over the temperature range of 10∿40℃. The apparatus and the experimental procedure used for measurement of the diffusion rate were the same as those described in the previous report. The test specimens were the disks having the sizes of 5.0cm in diameter, and 1.0cm (for longitudinal (L) diffusion) or 0.2cm (for tangential (T) diffusion) in thickness, which were prepared from green blocks of Hinoki-heartwood. The results obtained are as follows : (1) The variations of the diffusion coefficient due to the wood structure were especially remarkable for T-direction in Na_2SO_4,ZnSO_4 and CaCl_2,and for both L-and T-directions in CuCl_2 (Table 2). (2) A plot of the logarithm of diffusion coefficient against the reciprocal of absolute temperature showed linear relationship for the diffusion of all electrolytes and of both L-and T-directions (Fig. 3). (3) The relationship between the diffusion coefficient of electrolytes in wood at 25℃ (D_) and that in water at the same temperature (D_) was approximately parabolic for L- and T-directions (Fig. 4), and that between D_ and the diffusion coefficient of positive or negative ions in water at 25℃ (D_) was linear in all cases (Fig. 5). (4) Although the diffusion rates of the bivalent electrolytes through the water-saturated Hinoki wood depend upon the dimension and number of effective capillaries, especially the number of the bordered pit, it was assumed that there is no interaction between the wood capillary walls and either the diffusing molecule or ion, and that the molecule or ion in wood diffuses with the similar behavior to that in water. (5) The ratio of the diffusion coefficient of electrolytes through wood (D_) to that in water (D_) was about 1/2 for L-direction, and about 1/50 for T-direction in univalent electrolytes, and about 1/2.4 for L-direction, and about 1/93 for T-direction in bivalent electrolytes (Tables 3 and 4). It was recognized from these results that the diffusion for T-direction in bivalent electrolytes was difficult. (6) As the apparent activation energy and the mean temperature coefficient in the diffusion process of the bivalent electrolytes were indepedent of the both of diffusion direction and kinds of electrolytes with only few exceptions, it was suggested that they might be dependent upon the number of the bordered pit on tracheid wall (Table 5).}, pages = {70--77}, title = {飽水木材中の溶質拡散 IV : (3) 2 価電解質の拡散速度について(林学部門)}, volume = {31}, year = {1979}, yomi = {フクヤマ, マンジロウ and ウラカミ, ヒロユキ and イイダ, イクホ} }