@article{oai:kpu.repo.nii.ac.jp:00004971, author = {福山, 萬治郎 and Fukuyama, Manjiro}, journal = {京都府立大學學術報告. 農學, The scientific reports of Kyoto Prefectural University. Agriculture}, month = {Nov}, note = {飽水木材中における1価電解質の拡散速度の差異を明らかにするために, 濃度0.5mol/lの1価塩化物とNaBrを用い(Table 1参照), 20∿50℃の条件下でヒノキの3構造方向における拡散係数を測定した。測定装置や測定方法は前報のそれと全く同様で, 測定には直径5.0cm, 厚さ1.0cm(L-方向の拡散)および0.15cm(TおよびR-方向の拡散)の円板形の心材試片を用いた。得られた結果は次のとおりである。(1)木材組織に起因しての拡散係数の変動はLiClのR-方向および(NH)_4ClのT-方向において顕著であった(Table 2)。(2)拡散係数の対数と絶対温度の逆数をプロットした場合, 各溶液, 拡散方向いずれの場合も直線関係が得られた(Fig. 3)。(3)木材中における各溶液の拡散速度の順位は, NaClのL-方向を除いて拡散分子やイオンの25℃の水中における拡散係数の順位, ないしはイオン水和数の反対の順位に対応し, 3拡散方向いずれも直線関係を示した(Fig. 4)。(4)ヒノキ飽水木材中における1価電解質の拡散速度は, 拡散通路内に存在する有効毛管の大きさとその数, とくに有縁壁孔の数に支配されるが, 拡散分子やイオンは木材壁とは特別な交互作用をもつことなく, 水中における場合とほぼ同様な挙動で拡散することが推測された。(5) 25℃の木材中における1価電解質の拡散速度を同温度の水中におけるそれと比較すると, L-方向で平均約1/3,T-方向で平均約1/113,R-方向で平均約1/95であった(Table 3)。(6)本供試ヒノキ材では1∿2の例外を除いてT-方向とR-方向の拡散速度に差異が認められなかったが, L-方向の拡散速度はTおよびR-方向のそれの23∿40倍であった(Table 4)。(7)拡散の見掛けの活性化エネルギーや平均の温度係数は, 2∿3の例外を除いて拡散方向や電解質の種類には無関係であった(Table 6)。このことから仮道管壁に存在する有縁壁孔が両者の値に関係することが推測された。, The differences in diffusion rates of the electrolytes through water-saturated wood have been measured in the three structural directions of Hinoki wood (Chamaecyparis obtusa ENDL.) using the univalent chlorides and NaBr (Table 1) at a concentration of 0.5mol/l over the temperature range of 20-50℃. The apparatus and the experimental procedure used for measurement of the diffusion rate were the same as those described in the previous report. The test specimens were the disks having the sizes of 5.0cm in diameter, and 1.0cm [for longitudinal (L) diffusion] or 0.15cm [for tangential (T) and radial (R) diffusion] in thickness, which were prepared from green blocks of Hinoki-heartwood. The results obtained are as follows : (1) The variations of the diffusion coefficient due to the wood structure were especially remarkable for R-direction in LiCl and for T-direction in (NH)_4Cl (Table 2). (2) A plot of the logarithm of diffusion coefficient against the reciprocal of absolute temperature showed linear relationship for the diffusion of all electrolytes and of three structural directions (Fig. 3). (3) The order of magnitude of the diffusion coefficient in wood was almost coincident with those of D_ (diffusion coefficient of electrolytes in water at 25℃) or D_ (diffusion coefficient of ion in water at 25℃) and of reverse of the ionic hydration except for the L-direction of NaCl. The relationship between D_ and D_ (diffusion coefficient of electrolytes in wood at 25℃) was approximately linear (Fig. 4). (4) Although the diffusion rates of the univalent electrolytes through Hinoki wood depend upon the dimension and number of effective capillaries, especially the number of the bordered pit, it was assumed that there is no interaction between the wood capillary walls and either the diffusing molecule or ion, and that the molecule or ion in wood diffuses with the similar behavior to that in water. (5) The ratio of the diffusion coefficient of univalent electrolytes through wood to that into water in bulk was about 1/3 for L-direction, about 1/113 for T-direcion and about 1/95 for R-direction (Table 3). (6) There was no difference in the diffusion rates between T-and R-directions of Hinoki wood used in this experiment, while the diffusion coefficient in L-direction was approximately 23-40 times as great as the transverse values (Table 4). (7) As the apparent activation energy and the mean temperature coefficient in the diffusion process of the univalent electrolytes were independent of the both of diffusion direction and kinds of electrolytes with only few exceptions, it was suggested that they might be dependent upon the bordered pit on tracheid wall as pointed out previously.}, pages = {86--93}, title = {飽水木材中の溶質拡散 IV : (2) 1 価塩化物の拡散速度について(林学部門)}, volume = {28}, year = {1976}, yomi = {フクヤマ, マンジロウ} }