{"created":"2023-06-19T08:44:50.058241+00:00","id":3098,"links":{},"metadata":{"_buckets":{"deposit":"8dae59cd-d95e-4b04-a18e-e53cf45f2d1c"},"_deposit":{"created_by":14,"id":"3098","owners":[14],"pid":{"revision_id":0,"type":"depid","value":"3098"},"status":"published"},"_oai":{"id":"oai:kpu.repo.nii.ac.jp:00003098","sets":["47:212:279:280"]},"author_link":["4589"],"control_number":"3098","item_1696926521561":{"attribute_name":"その他(別言語等)","attribute_value_mlt":[{"subitem_alternative_title":"Note on invariants (A. NATURAL SCIENCE)","subitem_alternative_title_language":"en"}]},"item_3_biblio_info_12":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"1964-09-25","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"1","bibliographicPageStart":"1","bibliographicVolumeNumber":"4","bibliographic_titles":[{"bibliographic_title":"京都府立大学学術報告. 理学・生活科学・福祉学","bibliographic_titleLang":"ja"},{"bibliographic_title":"The scientific reports of the Kyoto Prefectural University. Natural science, living science and welfare science","bibliographic_titleLang":"en"}]}]},"item_3_description_11":{"attribute_name":"抄録(英)","attribute_value_mlt":[{"subitem_description":"Let V be an affine variety and let G be a connected linear algebraic group acting on V in the usual sense. Let R=K[f_1,f_2,…, f_n] be a coordinate ring of V. Then our main result is that : When G acts rationally, an element f of R is G-invariant if and only if ƒ is B-invariant with a suitable Borel sub group B of G. Let V be a surface, and let V' be a non-singular surface which is birationally equivalent to V and dominates V. We denote by T the anti-regular map from V onto V'. If V' satisfies the following conditions 1)∿4) then we shall say that V' is a resolved surface of V. Let Ω^* be the set of all points of V' which correspond to singular points of V, then Ω^* is a closed set of V'. 1) T is biregular at every simple point of V. 2) Ω^* is pure of dimension one and each irreducible component of Ω^* is non-singular. 3) Two components of Ω^* make a normal crossing at any common point. 4) No three components of Ω^* have a common points. Theorem 1. A resolved surface V' of a given surface V exists. Theorem 2. Let F be the set of all resolved surfaces of V. If F has two elements V_1 and V_2,then it has a third element V_3 which dominates V_1 and V_2.","subitem_description_language":"en","subitem_description_type":"Other"}]},"item_3_source_id_1":{"attribute_name":"雑誌書誌ID","attribute_value_mlt":[{"subitem_source_identifier":"AN00062322","subitem_source_identifier_type":"NCID"}]},"item_3_source_id_20":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"0075739X","subitem_source_identifier_type":"PISSN"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"大塚, 香代","creatorNameLang":"ja"},{"creatorName":"オオツカ, カヨ","creatorNameLang":"ja-Kana"},{"creatorName":"Otsuka, Kayo","creatorNameLang":"en"}],"familyNames":[{"familyName":"大塚","familyNameLang":"ja"},{"familyName":"オオツカ","familyNameLang":"ja-Kana"},{"familyName":"Otsuka","familyNameLang":"en"}],"givenNames":[{"givenName":"香代","givenNameLang":"ja"},{"givenName":"カヨ","givenNameLang":"ja-Kana"},{"givenName":"Kayo","givenNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"4589","nameIdentifierScheme":"WEKO"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2017-02-20"}],"displaytype":"detail","filename":"KJ00000079731.pdf","filesize":[{"value":"61.3 kB"}],"format":"application/pdf","mimetype":"application/pdf","url":{"label":"KJ00000079731.pdf","url":"https://kpu.repo.nii.ac.jp/record/3098/files/KJ00000079731.pdf"},"version_id":"ab6872d2-4baa-454d-bc14-4dbb27b32efd"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"不変元についての注意(A. 理学)","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"不変元についての注意(A. 理学)","subitem_title_language":"ja"}]},"item_type_id":"3","owner":"14","path":["280"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2017-02-20"},"publish_date":"2017-02-20","publish_status":"0","recid":"3098","relation_version_is_last":true,"title":["不変元についての注意(A. 理学)"],"weko_creator_id":"14","weko_shared_id":-1},"updated":"2024-03-04T02:54:06.239227+00:00"}