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Chapter 1 

General introduction 

 

1-1 Intestinal microbiota in mammals 

Intestinal microbiota of mammals develop complex ecosystems with vast 

diversity after birth that show large differences between animal species and individuals 

(Hooper 2004, Qin et al. 2010). In fact, 1,000 species (or, more precisely, operational 

taxonomic units) were detected in the human intestine (Rajilic-Stojanovic et al. 2007), 

and 100 trillion microorganisms reside in a human intestine, a number ten times greater 

than the total number of human cells in the body. These vast microbiota mutually 

interact with host human cells to promote many physiological responses of the host. 

Accordingly, humans are now recognized as being made up of superorganisms together 

with indigenous microbes (Hattori and Taylor 2009).  

According to Hattori and Taylor, the phylum Bacteroidetes, such as 

Bacteroides ovatus, B. thetaiotaomicron, B. uniformis, B. caccae, and B. fragilis, and 

the phylum Firmicutes, such as Ruminococcus gnavus, R. torques, and Eubacterium 

ventriosum, are the most active bacteria in adult human intestinal microbiota. In the 

infant, the phylum Firmicutes, such as Clostridium ramosum, C. clostridioforme, R. 

gnavus, Lactobacillus johnsonii, L. acidophilus, Streptococcus agalactiae, S. 

pneumonia, and Enterococcus faecalis, and the phylum Actinobacteria, such as 

Bifidobacterium longum, B. catenulatum, and Collinsella aerofaciens, are the most 

active bacteria in intestinal microbiota. These bacteria are mostly defined as commensal 

(i.e., non-harmful) bacteria.  

Intestinal microbiota, particularly the above-mentioned commensals, have 
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attracted the attention of many researchers, even those without a background in classical 

bacteriology, since the introduction of the culture-independent approach and 

metagenomic analyses realized by Next Generation Sequencing. This is because 

intestinal microbiota play an important role in digestion, absorption of nutrients, and 

maintaining the health of the host. Indeed, many studies are concerned with gut 

microbiota in order to characterize their comprehensive relationship to metabolic 

disorders and chronic diseases in view of the loss of health-promoting indigenous 

bacteria (Ley et al. 2005, Ley et al. 2006, Turnbaugh et al. 2008, Kellermayer 2013, 

Andoh et al. 2007, Wen et al. 2008). In most of these studies, the role of commensal 

bacteria in the development of gut-associated lymphoid tissue (GALT) has been focused 

on explaining their health promotion (Rhee et al. 2004). In addition to human and 

human models such as rats or mice, intestinal microbiota have been studied intensively 

in livestock, including some pet animals, due to their economic importance (Zhou et al. 

2007, Dowd et al. 2008, Turnbaugh et al. 2008, Hill et al. 2010, Handl et al. 2011).   

Such an ecosystem may evolve in a host-specific manner, as shown in the 

earlier study by Mitsuoka and Kaneuchi (1977). Host-specific development of intestinal 

microbiota is most likely caused by the host’s digestive system (Stevens and Hume 

1995) together with membrane glycoprotein of epithelial cells (Aissi et al. 2001, 

Laparra and Sanz 2009) and food habits (Ley et al. 2008). 

 

1-2 Lactic acid bacteria in mammals 

Lactic acid bacteria, namely bifidobacteria and lactobacilli, are common 

members of the gastrointestinal microbiota in a wide range of mammals (Mitsuoka and 

Kaneuchi 1977), and each animal species hosts different species of lactic acid bacteria 
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in its gastrointestinal tract (Endo et al. 2010).  

Many studies are concerned with the host-beneficial functions of lactic acid 

bacteria; for example, the immune-stimulating effect caused by the interaction between 

lactic acid bacteria and the intestinal mucosa of the host elevates the host’s defense 

against pathogenic penetration (Yamamoto et al. 1996, Kelly et al. 2005, Uchida et al. 

2006, Fink et al. 2007, Riboulet-Bisson et al. 2012).  

As mentioned above, the application of studies on the intestinal microbiota has 

been limited to humans (and its model animals) and livestock, due to their economic 

importance. Information regarding lactic acid bacteria in other animals is scarce. As 

shown above, lactic acid bacteria are the most active component of commensal 

intestinal bacteria in human infants. However, it is still unknown why lactic acid 

bacteria were selected to play such an important role in host defense, why they have a 

particular ecological niche in the gastro-intestinal tract, etc. Their importance should be 

recognized with the notion of the co-evolution of lactic acid bacteria with their 

mammalian hosts. In this context, studying the lactic acid bacteria of other mammals, 

particularly our phylogenetic neighbor the great apes, is important.  

As pioneers of intestinal microbiology, Mitsuoka and Kaneuchi (1977) isolated 

intestinal bacteria from various animal species using a fine-tuned culture-dependent 

method. They found that animals could be classified as either bifidobacterial- or 

lactobacillal-type animal. In the former, including humans, monkeys, guinea pigs, and 

chickens, bifidobacteria are the predominant lactic acid bacteria; in the latter, including 

pigs, mice, rats, hamsters, horses, and dogs, lactobacilli are predominant. Following 

their work, studies on the diversity of bifidobacteria and lactobacilli in herbivores, 

omnivores, and carnivores have been continued using culture-independent methods 
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(Lamendella et al. 2008, Walter 2008, Endo et al. 2010). In an intensive study by 

Lamendella et al., a range of domestic or captured animals such as humans, alpacas, 

llamas, beef cattle, dairy cattle, deer, goats, sheep, rabbits, hogs, horses, pigs, opossums, 

prairie dogs, bobcats, coyotes, domestic cats, domestic dogs, ferrets, Canadian geese, 

chickens, peacocks, pigeons, and turkeys was surveyed. B. adolescentis, B. angulatum, 

B. bifidum, B. breve, B. catenulatum, B. dentium, B. gallicum, B. infantis, and B. longum 

were detected in not only humans but also a wide range of animals (Table 1-1). The 

distribution is interesting because very limited detection was observed in the ruminants. 

B. adolescentis, B. catenulatum, and B. dentium were the species detected in the 

ruminant. However, these three species were allochthonous species and all detected in 

humans and pigs. Interestingly, pigs were the host for many species of bifidobacteria, 

although pigs are categorized as lactobacillal-type animals. In their study, the level of 

bifidobacterial diversity in pigs was followed by that in humans. The reasons for this 

particular pattern of distribution are unknown.  

L. acidophilus, L. crispatus, L. gasseri, L. johnsonii, L. salivarius, L. ruminis, L. 

casei, L. paracasei, L. rhamnosus, L. plantarum, L. reuteri, L. fermentum, L. brevis, L. 

delbrueckii, L. sakei, L. vaginalis, and L. curvatus are recognized as human-associated 

lactobacilli, although lactobacilli are not considered to be true inhabitants of the human 

GIT (Walter 2008). Nevertheless, lactobacilli are present in high numbers throughout 

the GIT of mice, rats, pigs, and chickens. Among the various lactobacilli, L. reuteri is 

considered to be an allochthonous lactobacillus (Walter 2008). In the study of the 

captured animals, lactobacilli were detected in all of the carnivores tested, but detection 

was limited to some omnivores and a few herbivores (Endo et al. 2010). L. reuteri, L. 

johnsonii, L. salivarius, L. vaginalis, and L. ingluviei were detected as dominant 



5 

 

lactobacilli in carnivores such as the cape fox, bat-eared fox, jackal, caracal, and lion. 

Interestingly, lactobacilli that are detected in plants and plant materials, such as L. brevis, 

L. casei, L. parabuchneri, L. plantarum, L. sakei, Leuconostoc mesenteroides, and Leu. 

pseudomesenteroides, were detected in omnivores such as raccoons, mongooses, 

marmosets, and tamarins. 

 Unfortunately, all of these studies were limited to livestock or captured wild 

animals, which caused a tremendous artificial effect on the development of intestinal 

microbiota. This artificial effect was clearly shown by comparisons between wild and 

captured chimpanzees (Uenishi et al. 2007). Such a difference was caused not only by 

the feeding procedure under conditions in captivity but perhaps also by the replacement 

of original bacteria with human-borne bacteria. B. angulatum-like bacteria were isolated 

from wild chimpanzees, while B. dentium was the major bifidobacteria detected in an 

infant chimpanzee artificially raised after birth (Uenishi et al. 2007, Ushida 2009).          

 

1-3 Aim of this study 

As discussed above, lactobacilli and bifidobacteria reside in a wide range of 

mammals as autochthonous intestinal bacteria. Therefore, some of the species in this 

group of bacteria should be regarded as allochthonous intestinal bacteria. In fact, the 

same species of lactic acid bacteria were detected in a wide range of animals 

(Lamendella et al. 2008, Walter 2008, Endo et al. 2010). However, it is still difficult to 

reveal how and what kind of selection was applied to the intestinal bacteria for the 

establishment of host-specific intestinal microbiota, although several prominent studies 

did reveal the distribution pattern of intestinal lactic acid bacteria. This limitation is 

probably caused by the selection of the host animals. In fact, studies were based only on 
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livestock and captured wild animals. Eating habits in native wild habitats are far from 

those in conditions of captivity. For example, wild plants have many protective 

chemicals to thwart predation (Bryant et al. 1992). Since these plants’ secondary 

metabolites may affect the microbial community (Wallace 2004, Uhlik et al. 2013), 

consumption of vegetables and crops under conditions in captivity may allow the 

growth of bacteria sensitive to the plants’ secondary metabolites. Moreover, the 

selection of target animals in the study did not account for phylogenetical 

ancestor-progeny relationships. Therefore, it is difficult to distinguish a vertically 

derived distribution (i.e., history of evolution: autochthonous) and horizontal 

transmission of a particular type of bacteria (allochthonous).  

One of the aims of this study was to investigate lactic acid bacteria in 

non-human wild primates. We have conducted a study of lactic acid bacteria in wild 

chimpanzees prior to this study (Uenishi et al. 2007, Ushida 2009, Ushida et al. 2010). 

In the present study, the author intended to characterize the lactic acid bacteria in wild 

and captured western lowland gorillas. The identification and characterization of 

gorilla-specific (or common for gorillas and chimpanzees) lactic acid bacteria may 

further help us understand the particular relationship between humans and 

bifidobacterium. Humans harbor higher amounts of bifidobacteria in the GIT with a 

species-level diversity much larger than that of other animals. Characterization of 

gorilla-specific bifidobacteria at the level of the bacterial genome will reveal what kind 

of selection worked in the human GIT as it is compared with the genomes of 

human-associated bifidobacteria. Loss of genes or the creation of novel functionality 

will be shown by comparing the characteristics of gorilla-specific species and those 

associated with humans.  



7 

 

The common ancestor of gorillas and humans presented some 7–10 million 

years ago in the forest of Africa (Gaqneux et al. 1999, Stewart and Disotell 1998, Scally 

et al. 2012). Since then, gorillas have always stayed in the tropical rain forest, 

depending always on the fruits and leaves; however, our human ancestors left the forest 

for the savanna and a hunting-gathering subsistence (McHenry and Coffing 2000). The 

food habits of our ancestors seem to have shifted from frugivore/folivore to 

carnivore/omnivore. Our food habits further shifted from hunting-gathering to crop 

consumption after the creation of agriculture some 10,000 years ago (Eaton and Konner 

1985). This evolution of food habits may have selected for particular bifidobacteria 

and/or induced the diversification of bifidobacteria. Therefore, the author intended to 

isolate bifidobacteria that are the original species in wild western lowland gorillas, 

because there have been no reports concerning bifidobacteria in wild gorillas thus far. If 

gorilla-specific bifidobacteria were obtained, the comparison between those 

bifidobacteria and those associated with humans would provide the answer to this 

question. 

In addition to bifidobacteria, the author focused on lactobacilli in wild western 

lowland gorillas. As mentioned above, lactobacilli are not a predominant member of the 

human microbiota. It has yet to be determined whether gorillas are bifidobacterial- or 

lactobacillal-type animals. Accordingly, the author intended to study and isolate 

lactobacilli from wild and captive western lowland gorillas. If gorillas have a distinct 

type of lactobacilli, the same approach as for gorilla-specific bifidobacteria will help us 

understand the adaptation of intestinal bacteria through the evolution of human food 

habits. 

The second aim of this study was to evaluate environmental effects on 
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intestinal microbiota. In this respect, the author intended to study the intestinal 

microbiota of western lowland gorillas, central chimpanzees, and a forest elephant in the 

wild by using pyrosequencing analysis because gorillas and chimpanzees in our study 

site are sympatric and depend on nearly the same food varieties. In general terms, the 

chemical components of the food seem to be similar for gorillas and chimpanzees. 

Elephants also depend mostly on similar foods in the forest. Therefore, the author 

included forest elephants in the study’s out-group. 

The study was conducted in Moukalaba-Doudou National Park (MDNP), 

Nyanga State, Gabon (Fig. 1-1). The park covers an area of 5,028 km
2
. The study area 

covers about 120 km
2
 in the southeastern part of the park at an altitude of 50–800 m. 

The research station was located at 2° 20′ and 10° 34′ E. The vegetation is a complex 

mosaic of semi-primary forest, secondary forest, Musanga cecropioides-dominated 

forest, savanna, and swamp (Iwata and Ando 2007). This area typically experiences two 

seasons: the rainy season from mid-October to May and the dry season from June to 

September. The mean annual rainfall (2002–2006) was 1,777 mm (range: 1,583–2,163 

mm). The mean monthly minimum and maximum temperatures varied from 21.3°C to 

24.1°C and 29.3°C to 33.7°C, respectively (Takenoshita et al. 2008). 

In this study area, we observed a wide range of mammals: gorillas, 

chimpanzees, forest elephants, monkeys, mandrills, red river hogs, forest buffaloes, 

duikers, panthers, wild cats, and pangolins. 
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Table 1-1. Results from Bifidobacterium species-specific PCR assays using different 

animal fecal DNA extracts* 

* adapted and modified from Table 3 in Lamendella et al. 2008 

a
 n, number of fecal samples tested for that animal type  

b
 -, no amplification product was visualized for any of the samples from a given animal. 

The figures in parentheses are percentages of the amplification-positive products in the 

samples. 

  

B. adolescentis B. angulatum B. bifidum B. breve B. catenulatum group B. dentium B. gallicum B. infantis B. longm

Alpaca (2) 1 (50) - - - - - - - -

Beef cattle (14) - - - - 1 (7.1) 1 (7.1) - - -

Canadian goose (20) - - - - 2 (10) 2 (10) - - -

Chicken (29) 1 (3.4) - 2 (6.9) 2 (6.9) - - 3 (10.3) - -

Coyote (11) 1 (9.1) - - - 1 (9.1) 1 (9.1) - - -

Dairy cattle (14) 4 (28.6) - - 1 (7.1) 2 (14.3) 8 (57.1) 1 (7.1) - -

Deer (17) 1 (5.9) - - - 2 (11.8) 2 (11.8) 2 (11.8) - -

Domestic cat (10) - - 2 (20) - 5 (50) - - - -

Domestic dog (15) - - 1 (6.7) - 2 (13.3) - - - -

Goat (4) - - - - 2 (50) 2 (50) - - -

Guinea pig (1) - - - - - 1 (100) - - -

Hog, feral (1) - - - - - 1 (100) - - -

Horse (16) - - - - 2 (12.5) 3 (18.8) 4 (25) - -

Human (19) 7 (36.8) - 4 (21.1) - 4 (21.1) 1 (5.3) - - 1 (5.3)

Pig (43) 13 (30.2) 11 (25.6) 22 (51.1) 2 (4.7) 20 (46.5) 15 (34.9) 7 (16.3) 2 (4.7) 2 (4.7)

Pigeon (4) - - 1 (25) - - - - - -

Possum (2) - - - - - 1 (50) - - -

Prairie dog (2) - - - - - 1 (50) - - -

Rabit (4) - 1 (25) 2 (50) 1 (25) 1 (25) 1 (25) 1 (25) - -

Septic (9) 1 (11.1) 1 (11.1) 3 (33.3) - 1 (11.1) 1 (11.1) 1 (11.1) - -

Sheep (8) 3 (37.5) 1 (12.5) - - 2 (25) 5 (62.5) 2 (25) - 2 (25)

Squirrel (4) - - - - - 1 (25) - - -

Turkey (10) - 1 (10) - - - - - - -

Animal type (n)
a No. of samples (%) detected with Bifidobacterium  sp. - and group-specific primer

b
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Fig. 1-1. Geographical information for Moukalaba-Doudou National Park in Gabon 

Pictures show (top to bottom) a chimpanzee (juvenile male), a forest elephant (juvenile 

female), and a gorilla (solitary male). 
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Chapter 2 

Bifidobacterium moukalabense sp. nov. isolated from the feces of wild western 

lowland gorilla (Gorilla gorilla gorilla) in Gabon 

 

2-1 Introduction 

Bifidobacteria are intestinal bacteria that are mostly regarded as 

human-associated bacteria, although they are distributed in a wide range of mammals 

(Mitsuoka and Kaneuchi 1977). It has been suggested that bifidobacteria are host- and 

animal-specific bacteria and are classified as ‘human type’, ‘animal type’ and others 

(Ventura et al. 2004). As shown in a recent study, it is important to isolate and identify 

novel bifidobacterium strains from various animals including humans to understand 

how they are distributed (Endo et al. 2012). We previously demonstrated that wild 

chimpanzees (Pan troglodytes verus) harbored bifidobacteria as a common component 

of their intestinal microbiota and these were human type, albeit a minor type among 

human bifidobacteria (Uenishi et al. 2007). 

We successfully isolated Bifidobacterium angulatum-like bacteria from wild 

chimpanzees in Bossou, Guinea (Ushida et al. 2010). However, wild chimpanzees were 

suggested to possess non-human type bifidobacteria based on sequence analyses of the 

bifidobacterial 16S rRNA genes retrieved from feces of chimpanzees in Mahale, 

Tanzania (Ushida 2009). Unlike Chimpanzees in Bossou, which live close to villages 

with populations of about 3,000 and dense agricultural fields, chimpanzees in Mahale 

live in remote areas far from human agricultural activities. In our preliminary 

experiments, a bifidobacterial partial 16S rRNA gene similar to those of the 

chimpanzees in Mahale was retrieved from the feces of a wild lowland gorilla (Gorilla 
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gorilla gorilla) in Gabon. Thus, the presence of bifidobacteria associated with 

non-human great apes was suggested. The author reports here a novel species of the 

genus Bifidobacterium isolated from the feces of a wild lowland gorilla, central 

chimpanzees (P. troglodytes troglodytes) and a forest elephant (Loxodonta africana 

cyclotis) in Moukalaba-Doudou National Park (MDNP) in Gabon. 

 

2-2 Materials and Methods 

Fresh gorilla feces were collected in the forest of Boutiana in MDNP by 

chasing a group of gorillas (designated ‘Group Gentil’) in November 2010. This group 

included one silver back male, one black back male, six adult females, eleven juveniles 

or sub-adults and four babies. The distance between the gorillas and researchers did not 

allow for identifying which individual had defecated. Chimpanzees are not yet well 

habituated, but they sometimes allow the approaching researchers to collect fresh feces. 

Elephants are one of most dangerous animals in this study area, but their numerous 

fresh feces are relatively easily collected. Fresh feces of chimpanzees and a elephant 

were collected at opportunity in the same forest in November 2010. 

Feces were collected in plastic bags with sterile tweezers to eliminate the 

portion contaminated with soil. After promptly returning to the base camp, a loopful of 

faecal specimen was inoculated on bifidobacteria selective (BS) agar plates. BS medium 

(Mitsuoka et al. 1965) was prepared with 58 g/L of BL agar medium (Nissui, Tokyo, 

Japan), 50 ml/L of defibrinated horse blood, 15 mg/L of sodium propionate (Wako, 

Osaka, Japan), 50 mg/L of paromomycin sulphate (Sigma-Aldrich Japan, Tokyo, Japan), 

200 mg/L of fradiomycin sulphate (Wako) and 3 g/L of lithium chloride (Wako). The 

plates were preserved in air tight bags, each with an Anaeropouch
®
, (Mitsubishi Gas 
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Chemical Company, Tokyo, Japan) at a minimum temperature as possible. In the city, 

the bags were placed in a refrigerator and in the forest they were placed in a dark place 

until use. 

After inoculation, the plates were preserved in plastic bags, each with an 

Anaeropouch
®
. After closing the bags, they were placed in a styrene foam box heated 

with hand warmers to maintain temperature as close to 37°C as possible, as in our 

previous study (Ushida et al. 2010). The bags were removed from the culture box when 

colony development was observed and stored as described above. 

The developed colonies were purified in the same medium in the laboratory 

using several transfers to fresh media. Isolates were grown in GAM broth medium 

(Nissui, Tokyo, Japan) and subjected to DNA extraction. After bead disruption, DNA 

was extracted using a DNA isolation kit (Fujifilm, Tokyo, Japan). 

Nearly complete (about 1500 bases) 16S rRNA gene sequences were 

determined as described previously (Tsukahara and Ushida 2002). Partial hsp60 

sequences were amplified by PCR using the primers H729 

(5′-CGCCAGGGTTTTCCCAGTCACGACGAIIIIGCIGGIACIACIAC-3′) and H730 

(5′-AGCGGATAACAATTTCACACAGGAYKIYKITCICCRAAICCIGGIGCYTT-3′) 

(Sakamoto et al. 2010). Both amplicons were sequenced at Hokkaido System Science 

Co., Ltd. (Sapporo, Japan) by the dye-terminator method. Sequences of the closest 

observed relatives of the isolate were retrieved from public databases. Calculation of 

pair-wise 16S rRNA and hsp60 gene sequence similarities was performed using MEGA 

version 5.05 (Tamura et al. 2011). Multiple sequence alignments were performed using 

the CLUSTAL W program (Thompson et al. 1994) and phylogenetic trees were 

constructed using the neighbor-joining method (Saitou and Nei 1987). Tree topology 
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was evaluated by a bootstrap analysis with 1000 replicates using CLUSTAL W. The 

minimum evolution with Kimura’s two-parameter model (Kimura 1980) and the 

maximum-parsimony phylogenetic tree were inferred using MEGA version 5.05. 

The extracted DNA was also subjected to nuclease treatment followed by HPLC 

analyses to determine G+C contents as described by Kitahara et al. (2005). Biochemical 

characteristics were evaluated using API 20A and API rapid ID 32A systems 

(Biomerieux; Paris, France) according to the manufacturer’s instructions with 

incubation at 37°C in an anaerobic jar. A growth range test was performed using 

anaerobic GAM broth at 15, 25, 37, 40 and 45°C for 48 h. Major cellular fatty acid 

analysis was performed using Sherlock Microbial Identification System version 4.5 

(Microbial Identification Inc, Newark, DE, USA) and their profiles were obtained using 

MIS Standard Libraries MOORE5.00 at Techno-Suruga Laboratory Co., Ltd. (Shizuoka, 

Japan). 

 

2-3 Result and Discussion 

Seventeen isolates are a gram staining positive rod with obligate anaerobic 

growth. Based on the 16S rRNA gene phylogeny, these isolate clearly belonged to the 

genus Bifidobacterium using neighbor-joining and minimum-evolution methods (Fig 

2-1a, b). A maximum-parsimony analysis provided similar results (not shown). The type 

strains of B. catenulatum (98.3%) and B. pseudocatenulatum (98.1%) were the closest 

neighbors of these isolates, although these values were sufficiently low to propose a 

novel species of bifidobacteria without evidence from DNA–DNA hybridization 

(Stackebrandt and Ebers, 2006). The hsp60 sequence of GG01
T
 presented the highest 

similarity to that of the type strain of Bifidobacterium dentium (92.2%), although the 
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phylogeny of its hsp60 sequence presented that these isolates were a species clearly 

different from any known species (Fig 2-2). 

We concluded that a novel species of the genus Bifidobacterium was isolated 

from a wild lowland gorilla in MDNP. The G+C content for the type strain of B. 

moukalabense was 60.1 mol% (Table 2-1). The biochemical characteristics of GG01
T
 

are compared with those of B. catenulatum JCM 1194
T
, B. pseudocatenulatum JCM 

1200
T
 and B. dentium JCM 1195

T
 (Table 2-2). Based on analyses with API 20A and API 

rapid ID 32A systems, these isolates possessed the same phenotypic pattern as those of 

B. catenulatum JCM 1194
T
, B. pseudocatenulatum JCM 1200

T
 and B. dentium JCM 

1195
T
, except for D-mannitol; cellobiose; melezitose; D-sorbitol; trehalose; leucyl 

glycine arylamidase; phenylalanine arylamidase; leucine arylamidase and alanine 

arylamidase. Anaerobic growth of strain GG01
T
 in GAM broth was observed at 25, 37 

and 40°C (Table 2-1). The cellular fatty acid composition was: C16:0 (42.59%); C18:1 ω9c 

(15.64%); C14:0 (13%); C18:0 (9.65%); C19 cycloprop. 9, 10 (6.82%); C18:1 ω9c DMA 

(2.96%); summed feature 10 (2.91%); C19:0 cyclo 9, 10 DMA (1.75%); C14:0 DMA 

(1.49%); C12:0 (1.33%) and C16:1 ω9c (1.21%) (Table 2-3). Palmitic acid (C16:0) and oleic 

acid (C18:1) were the two most abundant fatty acids in our isolates, both of which are 

also major fatty acids in B. catenulatum, B. pseudocatenulatum and B. dentium (Morita 

et al., 2011). A particular components detected in our isolates were C19 cyclopropane 

fatty acid. In addition to its G+C content, differential biochemical characteristics and 

distinctive cellular fatty acid compositions are presented in Table 2-1. 

Based on the results of this study, these isolates represent a novel species of the 

genus Bifidobacterium. We propose the species name Bifidobacterium moukalabense sp. 

nov. This novel species is considered to be a major Bifidobacterium in the intestine of 
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wild lowland gorillas, chimpanzees and elephants in MDNP. 

This type strain has been included in the Japan Collection of Microorganisms 

(JCM) and Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH 

(DSMZ) with the codes of JCM 18751
T
 and DSM 27321

T
, respectively, for B. 

moukalabense. 

 

2-4 Description of Bifidobacterium moukalabense sp. nov. 

Bifidobacterium moukalabense [mou.ka.lab.en’se. N.L. neut. adj. 

moukalabense pertaining Moukalaba-Doudou National Park, from where the type strain 

was isolated]. 

Cells on the BL agar are rods of various shapes (0.6 μm wide and variable in 

length, primarily 2–4 μm) with rounded ends, often curved, swollen and branched. This 

isolate is gram staining positive, non-motile and obligatory anaerobic. Colonies on BS 

agar are 1–3 mm in diameter, brownish-red, opaque, convex and disc shaped after 48 h 

under anaerobic conditions at 37°C. The optimum growth temperature is 37°C. It 

produces acids from L-arabinose, glucose, lactose, sucrose, maltose, salicin, D-mannose 

and raffinose, but not from glycerol, D-mannitol, cellobiose, D-sorbitol, rhamnose or 

trehalose. It hydrolyses aesculin but not gelatin. Indole and urease are not produced. 

Using Rapid ID 32 A, the strain is positive for α- and β-galactosidase, α- and 

β-glucosidase, α-arabinosidase, arginine arylamidase, proline arylamidase, leucyl 

glycine arylamidase, phenylalanine arylamidase, leucine arylamidase, tyrosine 

arylamidase, glycine arylamidase, histidine arylamidase and serine arylamidase, but 

negative for arginine dihydorase, β-galactosidase-6-phosphate, β-glucuronidase, 

N-acaetyl-β-glucosamidase, glutamic acid decarboxylase, α-fucosidase, alkaline 
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phosphatase, pyroglutamic acid arylamidase, alanine arylamidase and glutamyl glutamic 

acid arylamidase. The major fatty acids are C16:0, C18:1ω9c and C14:0. The DNA G+C 

content of the type strain is 60.1 mol%. 
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Table 2-1. Characteristics of strain GG01
T
 and those with closest phylogenetic 

neighbors* 

 

*Adapted and modified from Table 1 in Tsuchida et al.2014a. 

§ Fatty acids detected only in the strain indicated. Details are shown in Table 2-3. Data 

were obtained in this study unless otherwise indicated.  

†Data taken from: a, Morita et al. (2011); b, Scardovi et al. (1974); c, Scardovi et al. 

(1979). 

 

  

Characteristic B. moukalabense GG01
T

B. catenulatum  JCM 1194
T

B. pseudocatenulatum JCM 1200
T

B. dentium JCM 1195
T

Acid production from (API 20A)

D-Mannitol - - - +

Cellobiose - + + +

Melezitose + + + -

D-Sorbitol - + + +

Trehalose - + + +

Rapid ID 32A results

Leucyl glycine arylamidase + - - -

Phenylalanine arylamida + + + -

Leucine arylamidase + + + -

Alanine arylamidase - - + -

Distinctive fatty acid(s)§
C19 cycloprop. 9,10, C19:0

cyclo 9, 10 DMA

 C16:0 ω7c  DMA,     C18:0

12-OH
a
†

C10:0
a -

Temperature range for growth (ºC) 25-40 25-40 25-45 25-40

DNA G+C content (mol%) 60.1 54.7
b

57.5
c

61.2
b
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Table 2-2. Phenotypic characteristics for strain GG01
T
 of Bifidobacterium 

moukalabense sp. nov. and their closest phylogenetic neighbors* 

 

*Adapted and modified from Table S1 in Tsuchida et al.2014a. 

 

 

 

 

 

 

Characteristic B. moukalabens e GG01
T

B. catenulatum  JCM 1194
T

B. pseudocatenulatum  JCM 1200
T

B. dentium JCM1195
T

API 20A results

  D-Mannitol - - - +

  Cellobiose - + + +

  Melezitose + + + -

  D-Sorbitol - + + -

  Trehalose - + + +

All strains positive

All strains negative

Rapid ID 32A results

Leucyl glycine arylamidase + - - -

Phenylalanine arylamidase + + + -

Leucine arylamidase + + + -

Alanine arylamidase - - + -

All strains positive

All strains negative

Aesculin hydrolysis, Glucose, Lactose, Sucrose,  Maltose,  Salicin,  D-Xylose,  L-Arabinose,   D-Mannose,  Raffinose

Indole production, Urease, Gelatin hydrolysis,  Glycerol,   L-Rhamnose

α-Galactosidase, β-Galactosidase, α-Glucosidase, β-Glucosidase, α-Arabinosidase, Mannose, Raffinose, Arginine arylamidase,

Proline arylamidase, Tyrosine arylamidase, Glycine arylamidase, Histidine arylamidase, Serine arylamidase

Urease, Arginine dihydolase, β-Galactosidase, β-Glucuronidase, N-Acetyl-β-glucosaminidase, Glutamic acid decarboxylase, α-

Fucosidase, Nitrate reduction, Indole production, Alkaline phosphatase, Pyroglutamic acid arylamidase, Glutamyl glutamic acid

arylamidase
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Table 2-3. Cellular fatty acid compositions of strain GG01
T
 and their closest 

phylogenetic neighbors* 

 

*Adapted and modified from Table S2 in Tsuchida et al.2014a. 

Data are percentages of total fatty acids; values ≥ 1% are shown. ECL, Equivalent 

chain-length. *Summed features represent groups of two or three fatty acids that cannot 

be separated by the Microbial Identification System. Summed feature 10 consisted C 

18:1ω7c and an unknown fatty acid ECL 17.834. †Data taken from: Morita et al. (2011)  

  

Fatty acid B. moukalabense  GG01
T

B. catenulatum  JCM1194
T
† B. pseudocatenulatum  JCM1200

T
† B. dentium  JCM1195

T
†

Saturated strainght-chain:

  C10:0 - - 1.2 -

  C12:0 1.33 1.3 2.9 1.2

  C14:0 13 5.3 10.5 5.1

  C16:0 42.59 25.7 13.7 25.8

  C18:0 9.65 3.3 2.3 6.9

  C14:0 DMA 1.49 3.5 2.7 2.9

  C19:0 cyclo 9,10 DMA 1.75 - - -

Unsaturated strainght-chain:

  C16:1 ω7c - 1.8 3.9 1.1

  C16:1 ω7c DMA - 1.1 - -

  C16:1 ω9c 1.21 2.2 2.2 1.8

  C18:1 ω9c 15.64 18.3 33.6 22.8

  C18:1 ω9c  DMA 2.96 23.3 12.2 23.2

Hydroxy

  C18:0 12-OH - 1.5 - -

Cyclopropane acid

  C19 cycloprop. 9,10 6.82 - - -

Summed feature*

10 2.91 - - -
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B. moukalabense 44 (elephant) 

B. moukalabense 47 (gorilla) 

B. moukalabense 43 (elephant) 

B. moukalabense 33 (chimpanzee) 

B. moukalabense 16 (chimpanzee) 

B. moukalabense 14 (chimpanzee) 

B. moukalabense 62 (gorilla) 

B. moukalabense 63 (gorilla) 

B. moukalabense 65 (gorilla) 

B. moukalabense GG01T (gorilla)

B. moukalabense 1 (gorilla) 

B. moukalabense 2 (gorilla) 

B. moukalabense 3 (gorilla) 

B. moukalabense 4 (gorilla) 

B. moukalabense 6 (gorilla) 

B. moukalabense 8 (gorilla) 

B. moukalabense 9 (gorilla) 

B. catenulatum JCM 1194T (AF432082)

B. pseudocatenulatum JCM 1200T (D86187)

B. merycicum JCM 8219T (D86193)

B. angulatum JCM 7096T (D86182)

B. callitrichos JCM 17296T (AB559503)

B. dentium JCM 1195T (D86183)

B. kashiwanohense JCM 15439T (AB425276)

B. ruminantium JCM 8222T (D86197)

B. stercoris JCM 15918T (FJ611793)

B. adolescentis JCM 1275T (AP009256)

B. stellenboschense JCM 17298T (AB559505)

B. scardovii JCM 12489T (AJ307005)

B. bifidum JCM 1255T (U25952)

B. biavatii JCM 17299T (AB559506)

B. gallinarum JCM 6291T (D86191)

B. saeculare JCM 8223T (D89328)

B. pullorum JCM 1214T (D86196)

B. reuteri JCM 17295T (AB613259)

B. saguini JCM 17297T (AB559504)

B. breve JCM 1192T (AB006658)

B. longum subsp. infantis JCM 1222T (D86184)

B. longum subsp. longum JCM 1217T (AB437359)

B. longum subsp. suis JCM 1269T (AB116353)

B. tsurumiense JCM 13495T (AB241106)

B. coryneforme JCM 5819T (M58733)

B. indicum JCM 1302T (D86188)

B. asteroides JCM 8230T (EF187235)

B. actinocoloniiforme JCM 18048T (FJ858731)

B. boum JCM 1211T (D86190)

B. thermacidophilum subsp. thermacidophilum JCM 111657T (AB016246)

B. thermophilum JCM 1207T (U10151)

B. thermacidophilum subsp. porcinum JCM 16945T (AY148470)

B. magnum JCM 1218T (M58740)

B. cuniculi JCM 1213T (AB116298)

B. gallicum JCM 8224T (D86189)

B. pseudolongum subsp. pseudolongum JCM 1205T (D86195)

B. pseudolongum subsp. globosum JCM 5820T (D86194)

B. choerinum JCM 1212T (D86186)

B. animalis subsp. animalis JCM 1190T (D86185)

B. animalis subsp. lactis JCM 10602T (AB05136)

B. bohemicum JCM 18049T (FJ858736)

B. mongoliense JCM 15461T (AB433856)

B. bombi DSM 19703T (EU127549)

B. subtile JCM 5822T (D89378)

B. minimum JCM 5821T (M58741)

B. psychroaerophilum JCM 15958T (AY174108)

Escherichia. coli JCM 1649T (X80725)
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Fig. 2-1. Neighbor-joining (a) and minimum-evolution (b) phylogenetic trees based on 

16S rRNA gene sequence showing relationships between B. moukalabense and 

members of related Bifidobacterium species. Bootstrap values (>50%) based on 1000 

replicates are shown at branch nodes. Bars represent 0.02 (a) and (b) substitutions per 

nucleotide position. 
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Fig. 2-2. Neighbor-joining phylogenetic tree based on hsp60 gene sequence showing 

relationships between strain GG01
T
 and members of related Bifidobacterium species. 

Bootstrap values (>50%) based on 1000 replicates are shown at branch nodes. Bars 

represent 0.05 substitutions per nucleotide position. *Adapted and modified from Fig 2 

in Tsuchida et al.2014a. 
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Chapter 3 

Lactobacillus gorillae sp. nov. isolated from the feces of captive and wild western 

lowland gorillas (Gorilla gorilla gorilla) 

 

3-1 Introduction 

Lactobacilli are well studied lactic acid bacteria and isolated from various 

habitats such as fermented food, animal intestine and insect intestine (Irisawa et al., 

2014, Killer et al., 2014, Olofsson et al., 2014). Furthermore now comprised of over 

200 recognized species (Euzéby, 2014). Lactobacilli are commonly found in the 

gastrointestinal microbiota of a wide range of mammals (Mitsuoka & Kaneuchi, 1977) 

and each animal species hosts different species of Lactobacillus in their gastrointestinal 

tracts (Endo et al., 2010). However, previous studies have mostly focused on the 

microbiota of humans, livestock or captured animals. Therefore, we have focused on the 

gastrointestinal microbiota of wild animals (Tsuchida et al., 2014). In this study, we 

attempted to isolate and identify novel Lactobacillus strains from various wild animals 

to determine the host specific distributions of Lactobacilli and factors that affected their 

distributions. 

During a study on Lactobacilli in primates, particularly those in the wild, we 

isolated four previously unidentified strains. Therefore, we report here a novel species 

of the genus Lactobacillus that was isolated from the feces of captive and wild western 

lowland gorillas. 

 

3-2 Materials and Methods 

Fresh gorilla feces were collected from two captive gorillas (adult female and 
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adult male) at the Kyoto City Zoo in June 2013 and from one wild gorilla (adult female 

or male) in the Boutiana forest in the Moukalaba-Doudou National Park (MDNP), 

Gabon. Collected feces taken at the Kyoto City Zoo were identified on the basis of the 

volume and form. In MDNP, we collected feces by chasing a group of gorillas 

(designated ‘Group Gentil’) in November 2009. This group included one silver back 

male, one black back male, six adult females, eleven juveniles or sub-adults and four 

babies. Although the distance between the gorillas and researchers did not allow 

identifying which individual had defecated, the volume of feces was enough visible to 

distinguish feces of the adult from the juvenile. 

The feces of captive and wild western lowland gorillas were collected in plastic 

bags with sterile tweezers to eliminate that portion contaminated with soil. A loopful of 

a faecal specimen was inoculated on LBS (BBL) agar plates. These plates were 

incubated at 37°C in an incubator for the feces of captured gorillas. Anaerobiosis was 

maintained with Anaeropouch
®
 (Mitsubishi Gas Chemical Company, Tokyo, Japan).  

In the field of MDNP, the plates were kept as close to 37°C as possible under anaerobic 

conditions using an Anaeropouch
®
 as indicated in our previous study (Tsuchida et al., 

2014).  

The developed colonies were purified in the same medium in the laboratory 

using several transfers to fresh media. Isolates were grown in GAM broth (Nissui, 

Tokyo, Japan) and used for DNA extraction. After bead-disruption, DNA was extracted 

using a DNA isolation kit (QuickGene-Mini80; Fujifilm, Tokyo, Japan).  

Nearly complete (approximately 1,500 bases) 16S rRNA gene sequences were 

determined as previously described (Tsukahara & Ushida, 2002). Partial pheS sequences 

were amplified by PCR using the primers pheS-21F 
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(5′-CAYCCNGCHCGYGAYATGC-3′) and pheS-22R 

(5′-CCWARVCCRAARGCAAARCC-3′) (Naser et al., 2005). Both amplicons were 

sequenced at Hokkaido System Science Co., Ltd. (Sapporo, Japan) using the 

dye-terminator method. The sequences of the closest observed relatives of an isolate 

were retrieved from public databases. Calculations for pair-wise 16S rRNA and partial 

pheS gene sequence similarities were made using MEGA version 6.06 (Tamura et al., 

2013). Multiple sequence alignments were prepared using the CLUSTAL W program 

(Thompson et al., 1994) and phylogenetic trees were constructed using the 

neighbor-joining method (Saitou & Nei, 1987). Tree topology was evaluated with a 

bootstrap analysis with 1000 replicates using CLUSTAL W. The minimum -evolution 

with Kimura’s two-parameter model (Kimura, 1980) and the maximum -likelihood 

phylogenetic tree were inferred using MEGA version 6.06. 

DNA–DNA hybridization was performed among strains KZ01
T
, KZ02, KZ03, 

GG02 and L. fermentum JCM 1173
T
 according to a published method by using 

photobiotin and microplates (Ezaki et al., 1989). 

An automated ribotyping device, RiboPrinter 
®
microbial characterization 

system (Qualicon), was used for ribotyping according to the manufacturer’s instructions, 

with EcoRI used as the restriction enzyme. Ribopatterns were analysed by BioNumerics 

version 2.5 software (Applied Maths) and were compared by Pearson similarity 

coefficient analysis and the unweighted pair group method using arithmetic average 

(UPGMA) algorithm. 

Extracted DNA was also subjected to nuclease treatment followed by HPLC 

analyses to determine G + C contents, as described by Kitahara et al. (2005). 

Biochemical characteristics were evaluated using API 50 CH and API ZYM systems 
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(Biomerieux; Paris, France), according to the manufacturer’s instructions. A growth 

range test was done using LBS broth at 15°C and 45°C for 48 h under anaerobic 

conditions.  Tolerance to NaCl was examined in LBS broth containing 4.0, 6.5, 8.0 and 

10.0 % (w/v) NaCl after incubation for 7 days at 37°C. The proportions of D- and 

L-lactate were determined enzymically using DL-lactate test kit (Megazyme, Ireland). 

Cellular fatty acid profiles were determined using a Microbial Identification System 

(Microbial ID; MIDI). Cell wall peptidoglycans were prepared by the method of 

Kawamoto et al. (1981) and the amino acid contents in peptidoglycans were determined 

as described by Ahmed et al. (2014). 

This study was conducted non-invasively. Feces were collected in Kyoto City 

Zoo during routine litter clean up with the permission. Feces of wild gorilla were 

collected with a research permission from National Center of Scientific Research and 

Technology, Ministry of Higher Education, Scientific Research and Technological 

Development , Gabonese Republic under the contract between  Kyoto University and 

this center established since 2009. 

 

3-3 Result and Discussion 

Fifteen isolates from captive and wild western lowland gorillas were a gram - 

staining positive rod with facultative anaerobic growth. Based on 16S rRNA gene 

phylogeny, these isolates had identical 16S rRNA gene sequences and, using 

neighbor-joining analysis, clearly belonged to the Lactobacillus reuteri phylogenetic 

group (Fig. 3-1). Maximum likelihood analysis and minimum evolution analysis 

provided similar results (data not shown). L. fermentum JCM 1173
T
 (96.6%) was the 

closest neighbor to type strain KZ01
T
. Strains KZ01

T
, KZ02 and GG02 had identical 
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partial pheS gene sequences. The sequence of KZ01
T
 exhibited the highest similarity to 

that of L. fermentum JCM 1173
T
 (81.2%), although the phylogeny of these partial pheS 

gene sequences showed that these isolates were from a species that was clearly different 

from any known species (Fig. 3-2). 

The DNA–DNA relatedness values between strains KZ01
T
, KZ02, KZ03, 

GG02 and L. fermentum JCM 1173
T
 were very low (11%–22%). In contract, strains 

KZ01
T
, KZ02, KZ03 and GG02 showed a high value of DNA–DNA relatedness 

(83–92%) (Table 3-3). 

Ribotyping with the RiboPrinter system was used to investigate the 

relationships between strains KZ01
T
, KZ02, KZ03, GG02 and L. fermentum JCM 1173

T
 

(Fig. 3-3). A dendrogram based on ribotyping patterns showed a single cluster for four 

stains of L. gorillae. In addition, KZ01
T
 and KZ02 had similar ribotyping patterns and 

KZ03 and GG02 also had similar ribotyping patterns. 

Therefore, we concluded that a novel species of the genus Lactobacillus had 

been isolated from captured and wild western lowland gorillas and gave this the species 

name L. gorillae. 

The G + C contents for L. gorillae were 50.7–52.3 mol%, which was within the 

ranges reported for the genus Lactobacillus (Kandler and Weiss 1986) (Table 3-1). The 

phenotypic characteristics of the four strains of L. gorillae were compared with those of 

L. fermentum JCM 1173
T
 and these details are shown in Table 3-1. 

The cellular fatty acid compositions of the four strains of L. gorillae included 

saturated, unsaturated, cyclopropane and summed feature fatty acids (Table 3-2). 

Therefore, the major cellular fatty acids of L. gorillae were C16:0, C18:1 ω9c and C19:1 

cyclo 9,10. Cleary different cellular fatty acid compositions from that of L. fermentum 
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JCM 1173
T
 were C14:0 and C18:0 (Table 3-1). 

The four strains of L. gorillae and L. fermentum JCM 1173
T
 contained 

ornithine, glutamic acid and alanine. The inter-peptide bridges of peptidoglycans 

comprised L-ornithine and D-glutamic acid as diagnostic amino acids, which 

corresponded to cell wall peptidoglycan type A4β (Schleifer and Kandler 1972). 

Based on our analyses with the API 50 CH and API ZYM systems, L. gorillae 

had the same phenotypic pattern as that of L. fermentum JCM 1173
T
, except for cystine 

arylamidase, naphthol-AS-BI-phosphohydrolase, α-galactosidase and α-glucosidase. 

Acid production from D-xylose, arbutin, esculin, salicin, cellobiose, lactose and 

trehalose showed some variations between the four strains of L. gorillae. Anaerobic 

growth of L. gorillae on LBS agar was not observed at 15°C and 45°C (Table 3-1). Four 

strains of L. gorillae grew in the presence of 4.0 –6.5% NaCl and only KZ01T, KZ02 

and KZ03 grew in the presence of 8.0% NaCl. Growths of these isolates were not in the 

presence of 10.0% NaCl (Table 3-1). They were heterofermentative. Both D- and 

L-lactic acids were produced. In addition to the G + C contents, differential biochemical 

characteristics and distinctive cellular fatty acid compositions are shown in Table 3-1. 

Based on the results of this study in accordance with minimal standards for 

description of new taxa of genera Lactobacillus by Mattarelli et al. (2014), 15 strains 

from captive and wild western lowland gorillas represent a novel species of the genus 

Lactobacillus. We propose the species name Lactobacillus gorillae sp. nov. We consider 

this novel species to be a major Lactobacillus in the intestines of western lowland 

gorillas. 

Strain KZ01
T
 has been included in the Japan Collection of Microorganisms 

(JCM) and Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH 
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(DSMZ) with the codes JCM 19575
T
 and DSM 28356

T
, respectively, for L. gorillae. 

 

3-4 Description of Lactobacillus gorillae sp. nov. 

Lactobacillus gorillae [go.rillae. N.L. n. Gorilla, zoological genus name of the 

western lowland gorilla; N. L. gen. n. gorillae, of the western lowland gorilla]. 

Cells on LBS agar are rod-shaped (1 μm wide and variable in length, primarily 

3–8 μm) with rounded ends and are non-spore forming. These isolates are gram stain 

positive, non-motile, facultative anaerobes. Colonies on LBS agar are 1–2 mm in 

diameter, white, convex and smooth disc shaped after 48 h at 37°C under anaerobic 

conditions. They are heterofermentative. Both D- and L-lactic acids are produced. The 

type strain grows in the presence of 4.0 –8.0 % NaCl but not in the presence 10.0% 

NaCl. They produce acids from ribose, galactose, glucose, fructose, mannose, maltose, 

melibiose, sucrose and raffinose but not from glycerol, erythritol, D-arabinose, 

L-arabinose, L-xylose, adonitol, β-methyl-D-xyloside, sorbose, rhamnose, dulcitol, 

inositol, mannitol, sorbitol, α-methyl-D-mannoside, α-methyl-D-glucoside, 

N-acetyl-glucosamine, amygdalin, inulin, melezitose, starch, glycogen, xylitol, 

gentiobiose, D-turanose, D-lyxose, D-tagatose, D-fucose, L-fucose, D-arabitol, 

L-arabitol, 2-keto-gluconate or 5-keto-gluconate. Acid production from D-xylose, 

arbutin, esculin, salicin, cellobiose, lactose, trehalose and gluconate is variable. Using 

the API ZYM system, these strains are positive for esterase, esterase lipase, leucine 

arylamidase, valin arylamidase, phosphatase, α-galactosidase and β-galactosidase but 

are negative for alkaline phosphatase, lipase, cystine arylamidase, trypsin, 

α-chymotrypsin, naphthol-AS-BI-phosphohydrolase, β-glucuronidase, α-gulcosidase, 

β-gulcosidase, N-acetyl-β-glucosamidase, α-mannosidase and α-fucosidase. Their cell 
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wall peptidoglycan type is A4β (L-Orn-D-Asp). Their major fatty acids are C16:0, C18:1 

ω9c and C19:1 cyclo 9,10. The DNA G + C content of the type strain is 50.7 mol%. 
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Table 3-1. Characteristics of L. gorillae sp. nov. and those of the closest phylogenetic 

neighbor 

 

§ Fatty acids detected only in the particular strain are indicated. Details are shown in 

Table S1. Data were obtained during this study unless otherwise indicated.  

†Data from: Dellaglio et al. 2004. 

*Adapted and modified from Table 1 in Tsuchida et al.2014c. 

  

Characteristic L. gorillae KZ01
T L. gorillae  KZ02 L. gorillae  KZ03 L. gorillae  GG02 L. fermentum JCM1173

T

Acid production from (API 50CH):

 D-xylose - - + + -

 Arbutin - - w w -

 Esculin + - + + -

 Salicin - - - w -

 Cellobiose - - w w -

 Lactose - - + w +

 Trehalose - - + + -

API ZYM results:

 Cystine arylamidase - - - - +

 Naphthol-AS-BI-phosphohydrolase - - - - +

 α-galactosidase + + + + -

 α-glucosidase - - - - +

Distinctive cellar fatty acid(s)§ C14:0 , C18:0 C14:0 , C18:0 C14:0 , C18:0 C14:0 , C18:0 -

Growth at 15/45 °C -/- -/- -/- -/- w/w

Growth in Nacl

6.5% + + + + -

8% + + + - -

DNA　G+C content (mol%) 50.7 51.3 51.2 52.3 †52-54
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Table 3-2. Cellular fatty acid compositions of the L. gorillae sp. nov. strains and those 

of the closest phylogenetic neighbor 

 

Data are percentages of total fatty acids; values ≥ 1% are shown.  

*Summed features represent groups of two or three fatty acids that could not be 

separated using the Microbial Identification System. Summed feature 10 consisted of C 

18:1ω11c/ω9t/ω6t. *Adapted and modified from Table 2 in Tsuchida et al.2014c. 

 

Table 3-3. DNA－DNA hybridization values for Lactobacillus gorillae sp. nov. and 

Lactobacillus fermentum 

 

Fatty acid L. gorillae  KZ01
T L. gorillae  KZ02 L. gorillae  KZ03 L. gorillae  GG02 L. fermentum JCM1173

T

Saturated strainght-chain:

  C14:0 1.62 1.79 2.35 3.59 -

  C16:0 25.95 24.88 25.23 26.1 27.83

  C18:0 2.51 2.67 3.17 3.08 -

Unsaturated strainght-chain:

  C18:1 ω9c 27.44 28.49 29.1 28.78 13.61

  C18:2 ω6,9c - 1.1 - - -

Cyclopropane

  C19:1 cyclo 9,10 16.62 22.4 23.01 22.97 11.96

  C19:1 cyclo 11,12 13.22 10.61 9.2 8.42 25.99

Summed feature*

10 9.57 8.05 7.01 6.17 20.6

L. gorillae  KZ01
T

L. gorillae  KZ02 L. gorillae  KZ03 L. gorillae  GG02 L. fermentum JCM 1173
T

L. gorillae  KZ01
T

100 108 105 114 22

L. gorillae  KZ02 83 100 92 102 15

L. gorillae  KZ03 92 100 100 105 17

L. gorillae  GG02 85 88 86 100 11

L. fermentum JCM 1173
T

40 17 35 29 100

Probe

DNA
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Fig. 3-1. Neighbor-joining phylogenetic tree based on 16S rRNA gene sequences 

showing the relationships between L. gorillae sp. nov. and members of related 

Lactobacillus species. Bootstrap values (>50%) based on 1,000 replicates are shown at 

branch nodes. Bars represent 0.02 substitutions per nucleotide position. 

*Adapted and modified from Fig 1 in Tsuchida et al.2014c. 

  

L. gorillae 9 (wild)

L. gorillae 15 (wild)

L. gorillae 6 (wild)

L. gorillae GG02 (AB904719)(wild)

L. gorillae KZ01T (AB904716)(captive)

L. gorillae KZ03 (AB904718)(captive)

L. gorillae KZ02 (AB904717)(captive)

L. gorillae 8 (wild)

L. gorillae 14 (wild)

L. gorillae 12 (wild)

L. gorillae 11 (wild)

L. gorillae 3 (wild)

L. gorillae 7 (wild)

L. gorillae 4 (wild)

L. gorillae 5 (wild)

L. fermentum JCM 1173T (JN175331)

L. ingluviei JCM 12531T (AB289169)

L. coleohominis JCM11550T (AB289060)

L. secaliphilus JCM 15613T (AM279150)

L. equigenerosi JCM 14505T (AB288050)

L. gastricus JCM 15952T (AY253658)

L. mucosae JCM 12515T (AF126738)

L. reuteri JCM 1112T (L23507)

L. pontis JCM 11051T (AB289267)

L. vaginalis JCM 9505T (AB289311)

L. antri JCM 15950T (AY253659)

L. oris JCM 11028T (AB289207)

L. frumenti JCM 11122T (AB289119)

L. panis JCM 11053T (AB289208)

L. delbrueckii subsp. delbrueckii JCM 1012T (AB289084)

99

60

56

59

80

99

98

68

99

69

62

99

58

0.02
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Fig. 3-2. Neighbor-joining phylogenetic tree based on partial pheS gene sequences 

showing the relationships between strains KZ01
T
, KZ02, KZ03, GG02 and members of 

related Bifidobacterium species. Bootstrap values (>50%) based on 1,000 replicates are 

shown at branch nodes. Bars represent 0.05 substitutions per nucleotide position. 

*Adapted and modified from Fig 2 in Tsuchida et al.2014c. 

 

 

Fig. 3-3. Dendrogram illustrating the relatedness of the ribotyping patterns of strains 

KZ01
T
, KZ02, KZ03, GG02 and L. fermentum JCM 1173

T
. This dendrogram was 

analysed using Pearson similarity coefficient analysis and the UPGMA algorithm. 

*Adapted and modified from Fig 3 in Tsuchida et al.2014c. 
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70

100

96

55

67

55

0.05

1
0
0

5
0

K@Tsuchida@000.

K@Tsuchida@000.

K@Tsuchida@000.

K@Tsuchida@000.

K@Tsuchida@000.

genki

momota2

momota3

53

JCM173

Pearson correlation

Lactobacillus gorillaeKZ01T 

Lactobacillus gorillaeKZ02

Lactobacillus gorillaeKZ03

Lactobacillus gorillaeGG02

Lactobacillus fermentum JCM 1173T 



36 

 

Chapter 4 

Characterization of intestinal bacterial communities of western lowland gorillas 

(Gorilla gorilla gorilla), central chimpanzees (Pan troglodytes troglodytes), and a 

forest elephant (Loxodonta africana cyclotis) living in Moukalaba-Doudou National 

Park in Gabon 

 

4-1 Introduction 

Intestinal microbiota in the mammal develop a complex ecosystem of vast 

diversity after birth. For example, humans and mice, as experimental animals, possess at 

least 1,000 and 400 phylogenetically different bacteria, respectively (Hooper 2004, Qin 

et al. 2010). It has been speculated that such an ecosystem may develop in a 

host-specific manner (Ley et al. 2008). This was evidenced by the earlier studies done 

by Mitsuoka and Kaneuchi (1977) in which each animal species possesses a particular 

composition of microbiota. The interaction between bacteria and the intestinal mucosa 

of the host explains the selection of bacteria to some extent (Yamamoto et al. 1996, 

Kelly et al. 2005, Uchida et al. 2006). The feeding behavior of the hosts further selects 

the bacteria that can reside in their intestine. In this context, there may be clear 

differences in the composition of microbiota between herbivores and carnivores 

(Mitsuoka and Kaneuchi 1977, Ley et al. 2008, Endo et al. 2010).  

Intestinal microbiota have been intensively studied in humans, model animals 

such as rats or mice, and livestock, including some pet animals, due to their economic 

importance (Zhou et al. 2007, Dowd et al. 2008, Turnbaugh et al. 2008, Hill et al. 2010, 

Handl et al. 2011). Indeed, many studies are concerned with gut microbiota in order to 

characterize its particular relationship to metabolic disorders and chronic diseases in 
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view of the loss of health-promoting indigenous bacteria (Kellermayer 2013, Andoh et 

al. 2007, Wen et al. 2008). Such protective microbiota should have a particular 

relationship with their host, and such a relationship can be explained by the concept of 

co-evolution between the host and its intestinal microbiota (Amato 2014). 

Comprehensive analyses on the microbiota of wild animals have been out of focus for 

such nutritional and pathological studies. Accordingly, there are only a few studies 

elucidating on the microbiota of wild animals except for those of the great apes under 

captivity (Kisidayová et al. 2009, Vlčková et al. 2012). We believe that the surveys on 

the intestinal microbiota of wild animals have tremendous importance for the 

understanding of the co-evolution between the host and its intestinal microbiota. Our 

previous study reveals that the fecal microbiota of wild chimpanzees (P. troglodytes 

verus) were clearly different from those under captivity with some particular influences 

from human-associated bacteria (Uenishi et al. 2007, Ushida 2009). Studies on captive 

animals may have limitations in revealing the original composition of intestinal 

microbiota of the target animals. 

Our previous study adopted 16S rDNA-based temperature gradient gel 

electrophoresis (TGGE), which enables us to analyze bacteria of top 20-level abundance 

(Uenishi et al. 2007). Recent developments in sequencing technology can characterize 

the individual differences of human microbiota by deep sequencing (Wu et al. 2010). 

Therefore, we decided to study the intestinal microbiota of gorillas, chimpanzees, and 

an elephant in the wild by using pyrosequencing analysis for a more precise 

understanding of their intestinal microbiota. We have selected western lowland gorillas 

(Gorilla gorilla gorilla) and central chimpanzees (P. troglodytes troglodytes) in 

Moukalaba-Doudou National Park (MDNP) in Gabon as targets because they are 
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sympatric in depending on nearly the same food variety, with the exception of 

temporary ingestion of insects, which is one of preferred food for chimpanzees in 

general (Tutin and Fernandez 1993, Yamagiwa and Basabose 2006). As mentioned 

above, the food habits of the hosts select the intestinal bacteria. It is important to 

compare the intestinal bacteria between sympatric apes, gorillas, and chimpanzees, 

which reflect their adaptation to a particular food habit. In this context, we are also 

interested in intestinal microbiota of forest elephants (Loxodonta africana cyclotis), 

which are the major herbivore animals in the study area that forage grass, leaves, and 

fruits. In general terms, the chemical components of their food seem to be similar to 

those of the food of gorillas and chimpanzees. 

This is the first report on the comparison of the intestinal microbiota of 

sympatric wild gorillas and wild chimpanzees. This is also the first bacteriological study 

on the wild forest elephant. 

 

4-2 Materials and Methods 

4-2-1 Study site 

The study was conducted in MDNP, Gabon (Chapter 1. Fig 1-1). The park 

covers an area of 5,028 km
2
. The study area covers about 120 km

2
 in the southeastern 

part of the park at an altitude of 50–800 m. The research station was located at 2° 20′ 

and 10° 34′ E. The vegetation is a complex mosaic of semi-primary forest, secondary 

forest, Musanga cecropioides-dominated forest, savanna, and swamp (Iwata and Ando 

2007). This area typically experiences two seasons: the rainy season from mid-October 

to May and the dry season from June to September. Mean annual rainfall (2002–2006) 

was 1,777 mm (range: 1,583–2,163 mm). The mean monthly minimum and maximum 
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temperatures varied from 21.3°C to 24.1°C and 29.3°C to 33.7°C, respectively 

(Takenoshita et al. 2008). 

 

4-2-2 Sampling of feces 

The feces were collected in the forests of Boutiana and Douguetsi in MDNP in 

Gabon. In this national park, anthropological and ecological studies have been carried 

out since 2003, and a group of gorillas is now habituated (Ando et al. 2008). 

Chimpanzees are not yet well habituated, but they sometimes allow the approaching 

researchers to collect fresh feces. Elephants are one of most dangerous animals in this 

study area, but their numerous fresh feces are relatively easily collected. The fresh feces 

of western lowland gorillas were collected on November 23 and December 16, 2011, in 

Boutiana. From the volume and size of the feces, one fecal sample was judged to be 

from a male silverback gorilla (SBG) of this group, and the other the feces of an infant 

gorilla (IG). The feces of chimpanzees (CH1 and CH2) were collected on December 29, 

2011, in the forest of Douguetsi adjacent to that of Boutiana. Fresh feces from an 

elephant (EP) was collected in Boutiana on December 20, 2011. A portion of feces free 

from contamination such as soil or dead leaves was sampled in an RNA later solution. 

Samples were stored in a dark place in the campsite of Boutiana until the end of the 

field research (January 8, 2012). Samples were then transported to the laboratories of 

the Research Institute of Tropical Ecology (IRET) at Libreville, where samples were 

placed in a refrigerator and later transported to Kyoto Prefectural University; there, 

samples were stored at -20°C until DNA extraction. 

 

4-2-3 Culture-independent method 
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Bacteria were recovered from the fecal samples by centrifugation with 

exhaustive washing with phosphate-buffered saline to remove residual RNA later 

solution. The resultant bacterial pellets were subjected to DNA extraction with cell 

disruption by zirconia beads beating (Microsmash, TOMY, Tokyo) and a DNA stool 

mini kit (QIAGEN, Tokyo). After quantification by spectrophotometry, a portion (100 

ng) of each DNA was subjected to PCR amplification of a partial 16S rRNA gene 

(V1-V2 region) using ExTaq polymerase (Takara, Kyoto). PCR primers, 27F 

(5’-AGAGTTTGATCCTGGCTCAG-3’) and 520R (5’-ACCGCGGCTGCGGC-3’) 

(Lane 1991), were used to gain nearly 500 bp PCR amplicon in size. Both primers were 

attached with barcode sequences. The primers were supplied from Hokkaido System 

Science Co., Ltd. (Sapporo, Japan). PCR was performed under the following conditions: 

3 min of initial denaturation at 95°C followed by 30 cycles (95°C for 30 s, 55°C for 40 s, 

and 72°C for 90 s) and final extension at 72°C for 4 min. The amplicons were purified 

by the PCR Clean-Up System (Promega, Madison, WI, USA).  

 

4-2-4 Pyrosequence analysis 

Pyrosequencing and sequence analysis was performed at Hokkaido System 

Science. Pyrosequencing was performed by the 454 Genome Sequencer FLX (Roche 

Applied Science, Penzberg, Upper Bavaria, Germany) according to the manufacturer’s 

instructions. 

The sequences were cleaned by custom script on LINUX to remove sequences 

comprising a base-call other than A, T, C, or G. Then the sequences shorter than 250 bp 

were removed from whole sequence reads by the same application. The resultant 

cleaned sequence reads were further subjected to BLAST search by the stand-alone 
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program NCBI BLAST (http://www.ncbi.nlm.nih.gov/books/ NBK52640/) to remove 

sequences showing less than 50% alignment similarity with known sequences, because 

those sequences possibly contained chimeric sequences. 

 

4-2-5 Taxonomic classification analysis on pyrosequencing data 

The cleaned sequences from the previous step were assigned their phylotypes 

using DDBJ database according to QIIME 454 Tutorials 

(http://qiime.org/tutorials/tutorial.html) with 80% confidence threshold. In this 

taxonomic analysis, we defined sequences as identified OTUs (Operational Taxonomic 

Units) when their similarities to known sequences were lager than 90%. The sequences 

were defined as no-rank OTUs if their similarities to known sequences were smaller 

than 90%. 

 

4-2-6 UniFrac cluster analysis 

The cleaned sequences were compared in a pair-wise fashion by means of the 

UniFrac distance metric (Lozupone and Knight 2005). All steps were carried out in an 

automated fashion within QIIME (Caporaso et al. 2010). UniFrac analysis was carried 

out in a weighted fashion, which takes into account the relative proportions of each 

individual (Wu et al. 2010). Clustering was visualized for weighted UniFrac data using 

principal coordinate analysis (Gower 1966). 

 

4-3 Results 

4-3-1 Pyrosequencing  

The total nucleotides of 16S rRNA genes detected from the feces, number of 

http://www.ncbi.nlm.nih.gov/books/
http://qiime.org/tutorials/tutorial.html
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sequence reads, and average read length are shown in Table 4-1. On average, 

pyrosequencing on fecal samples of IG, SBG, CH1, CH2, and EP yielded 16,898 reads 

with a read length of 390 nucleotides (10,860,585 nucleotides in total). Rarefaction 

curves calculated by Chao1 richness estimator in QIIME indicated that microbial 

diversity reached saturation at 14,000 sequence reads (Fig. 4-1). 

 

4-3-2 Phylogenetic profile of the fecal bacteria at phylum and class levels  

Firmicutes and Bacteroidetes were detected as major bacterial phyla in the 

feces of all animal studied. Then, Clostridia and Bacteroidia were detected as the major 

bacterial classes in the feces of all animal studied. Erysipelotrichi was detected as the 

major class of the fecal Firmicutes in chimpanzees (Fig. 4-2). 

 

4-3-3 Phylogenetic profile of the fecal bacteria in gorillas at family and genus levels 

The major bacterial families (>5% in total population) detected in the feces of 

IG were Prevotellaceae, Clostridiaceae, Ruminococcaceae, Eubacteriaceae, and 

Lachnospiraceae, each having 6,378 (37%), 1,764 (10%), 1,609 (9%), 818 (5%), and 

786 (5%) sequences, respectively (Fig. 4-3A). These five families accounted for 66% of 

the total fecal bacteria in IG.  

At the genus level, the fecal bacteria of IG was dominated by no-rank OTUs 

which relates to unknown Firmicutes (GU428814_1) followed by the OTUs assigned as 

Prevotella. Within no-rank OTUs at genus level, which covered 40% of the total 

sequence reads retrieved from the fecal bacteria of IG, the most prevalent no-rank OTU 

was suggested to relate with the sequence of unknown Firmicutes (GU428814_1), the 

second to unknown Firmicutes (AB262677_1), and the third to unknown Bacteroidetes 
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(AB547676_1).  

In identified OTUs at genus level, which covered 60% of the total sequence 

read, the most prevalent OTU was similar to Prevotella copri, the second to Prevotella 

oulorum, and the third to Clostridium indolis. Their similarities with known sequences 

were from 92% to 96%. 

For the fecal bacteria of SBG, Prevotellaceae, Lachnospiraceae, Clostridiaceae, 

and Veillonellaceae were the major families, each having 5,306 (33%), 3,062 (19%), 

1,080 (7%), and 795 (5%) sequences, respectively (Fig. 4-3B). These four families 

accounted for 64% of the total fecal bacteria in SBG. 

At the genus level, the fecal bacteria of SBG was dominated by no-rank OTUs 

which relates to unknown Bacteroidetes (EU728760_1) followed by the OTUs assigned 

as Prevotella. Within no-rank OTUs at genus level, which covered 34% of the total 

sequence reads retrieved from the fecal bacteria of SBG, the most prevalent no-rank 

OTU was suggested to relate with the sequence of unknown Bacteroidetes 

(EU728760_1), the second to unknown Firmicutes (GU429031_1), and the third to 

unknown Bacteroidetes (AJ009933_1). In identified OTUs at genus level, which 

covered 66% of the total sequence read, the most prevalent OTU was similar to 

Oribacterium sinus, the second to Prevotella bryantii, and the third to Prevotella 

paludivivens. Their similarities with known sequences ranged from 92% to 98%. 

At the major families in the feces of gorillas, Ruminococcaceae and 

Eubacteriaceae presented in only the fecal bacteria of IG. These bacterial families 

presented in the fecal bacteria of SBG, however they were minor families. While 

Veillonellaceae were the major families in only the fecal bacteria of SBG. This 

babcterial family was not detected in the fecal bacteria of IG. 
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4-3-4 Phylogenetic profile of the fecal bacteria in chimpanzees at family and genus 

levels 

The major families (>5% in total population) in the feces of CH1 were 

Lachnospiraceae, Prevotellaceae, Clostridiaceae, Oscillospiraceae, Erysipelotrichaceae, 

Ruminococcaceae, Veillonellaceae, and Eubacteriaceae, each having 2,420 (15%), 1,862 

(11%), 1,317 (8%), 944 (6%), 935 (6%), 868 (6%), 815 (5%), and 734 (5%) sequences, 

respectively (Fig. 4-3C). These eight families accounted for 63% of the total fecal 

bacteria in CH1. 

At the genus level, the fecal bacteria of CH1 was dominated by no-rank OTUs 

which relates to unknown Bacteroidetes (AB239491_1) followed by the OTUs assigned 

as Prevotella. Within no-rank OTUs at genus level, which covered 49% of the total 

sequence reads retrieved from the fecal bacteria of CH1, the most prevalent no-rank 

OTU was suggested to relate with the sequence of unknown Bacteroidetes 

(AB239491_1), the second to unknown Bacteroidetes (GQ131410_1), and the third to 

unknown Firmicutes (GU470893_1). In identified OTUs at genus level, which covered 

51% of total sequence read, the most prevalent OTU was similar to Oscillibacter 

valericigenes, the second to Prevotella oulorum, and the third to Prevotella oris. Their 

similarities with known sequences ranged from 92% to 96%. 

In the feces of CH2, the major bacterial families were Lachnospiraceae, 

Prevotellaceae, Erysipelotrichaceae, and Clostridiaceae, each having 3,505 (18%), 2,695 

(14%), 2,533 (13%), and 1,886 (10%) sequences, respectively (Fig. 4-3D). These four 

families accounted for 55% of the total fecal bacteria in CH2. 

At the genus level, the fecal bacteria of CH2 was dominated by no-rank OTUs 

which relates to unknown Firmicutes (GU470893_1) followed by the OTUs assigned as 
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Prevotella. Within no-rank OTUs at genus level, which covered 44% of the total 

sequence reads retrieved from the fecal bacteria of CH2, the most prevalent no-rank 

OUT was suggested to relate with the sequence of unknown Firmicutes (GU470893_1), 

the second to unknown Bacteroidetes (AB239491_1), and the third to unknown 

Bacteroidetes (GQ422745_1). In identified OTUs at genus level, which covered 56% of 

the total sequence read, the most prevalent OTU was similar to Oribacterium sinus, the 

second to Prevotella oulorum, and the third to Prevotella oris. Their similarities with 

known sequences were from 92% to 97%. 

At the major families in the feces of chimpanzees, Oscillospiraceae 

Ruminococcaceae, Veillonellaceae, and Eubacteriaceae presented in only the fecal 

bacteria of CH1. These bacterial families presented in the fecal bacteria of CH2, 

however they were minor families.  

 

4-3-5 Phylogenetic profile of the fecal bacteria in an elephant at family and genus levels 

The major families (>5% in total population) in the feces of EP were 

Lachnospiraceae, Prevotellaceae, Clostridiaceae, and Eubacteriaceae, each having 1,357 

(9%), 1,347 (9%), 1185 (8%), and 752 (5%) sequences, respectively (Fig. 4-3E). These 

four families accounted for 26% of the total fecal bacteria in EP. 

At the genus level, the fecal bacteria of EP was dominated by no-rank OTUs 

which relates to unknown Firmicutes (EU281854_1) followed by the OTUs assigned as 

Prevotella. Within no-rank OTUs at genus level, which covered 52% of the total 

sequence reads retrieved from the fecal bacteria of EP, the most prevalent no-rank OTU 

was suggested to relate with the sequence of unknown Firmicutes (EU281854_1), the 

second to unknown Bacteridetes (AB501166_1), and the third to unknown Firmicutes 



46 

 

(AB596885_1). In identified OTUs at genus level, which covered 48% of the total 

sequence read, the most prevalent OTU was similar to Prevotella ruminicola, the 

second to Prevotella copri, and the third to Prevotella oulorum. Their similarities with 

known sequences ranged from 92% to 94%. 

 

4-3-6 Common bacterial families and genus in the feces of gorillas, chimpanzees, and 

an elephant 

At the family level, Prevotellaceae and Clostridiaceae were detected as major 

bacterial families in the feces of all animals. Excluding IG, Lachnospiraceae was 

detected as a major bacterial family in the feces of adult animals. Unidentified families 

accounted for >20% of the population in all animals (Fig. 4-3). 

At the genus level, Prevotella was detected as the most dominant bacterial 

genus in the feces of all animals.  

 

4-3-7 UniFrac cluster analysis 

Weighted UniFrac analysis, which takes into account the information of 

abundance, shows the relative difference in composition of fecal microbiota of gorillas, 

chimpanzees, and an elephant (Fig. 4-4). 

 

4-4 Discussion 

Intestinal microbiota play an important role in digestion, absorption of 

nutrients, and the host’s health (Sekirov et al. 2010, Kau et al. 2011). This theory is 

substantiated by many works in humans and their model experimental animals, as well 

as in some livestock. Such a relationship is now understood as a context of co-evolution 
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(Amato 2014). Studies on the intestinal microbiota of wild animals are important for 

recognizing the co-evolution of the host and its intestinal microbiota. However, the 

intestinal microbiota in wild animals have not been well studied due to the technical 

difficulties of cultivation in field conditions.  

In developing culture-independent analyses, some of the studies succeeded in 

showing the characteristics of the intestinal microbiota of wild animals (Uenishi et al. 

2007, Glad et al. 2010). However, the techniques allowed analysis only of the top 20 to 

top 200 levels of bacteria. The recent development of the so-called Omics approach 

allows for analysis of some 1,000 bacterial OTUs. This development is helpful for 

better understanding the characteristics of intestinal microbiota of particular wild 

animals. 

In the present study, we believe that the host-specific characteristics of the 

fecal microbiota of wild western lowland gorillas, central chimpanzees, and a forest 

elephant that are living in a relatively narrow area and foraging quite similar food 

resources are shown. In previous studies, by using metagenomic analyses, Bacteroidetes 

and Firmicutes were shown to be the major intestinal bacterial phyla of various 

mammals, including gorillas, chimpanzees, and elephants in the wild and in captivity 

(Ley et al. 2008, Moller et al. 2013). Our results also demonstrate that the Firmicutes 

and Bacteroidetes were the common intestinal bacteria for gorillas, chimpanzees, and 

forest elephants at the phylum level. However, the relative proportion of these phyla 

were not the same for host animal species tested (Fig 4-2). Therefore, as shown by 

UniFrac analysis, the fecal microbiota in gorillas and in chimpanzees were different, 

and that of an elephant was further distant from those of gorillas and chimpanzees. 

Among the identified OTUs at genus levels, excluding SBG, Prevotella 



48 

 

oulorum was detected as the dominant OTU of all animals, and Prevotella oris was the 

dominant OTU of chimpanzees. In addition to these, Prevotella copri was detected as 

the dominant OTU of IG and EP. However, only a few identified OTUs were commonly 

shared by three different animal species. 

The most important finding of this study is the quantitative importance of 

no-rank OTUs in the fecal microbiota of all animals tested. In our results at genus level, 

no-rank OTUs covered from 35% (SBG) to 52% (EP) of the total sequences in each 

animal subject. Moreover, they constituted the richest OTUs in all animals. As indicated 

above, the similarity of sequences of no-rank OTUs to those registered in the data bank 

was lower than 90% in this study. These no-rank OTUs are, accordingly, unknown 

bacteria that have never been isolated or characterized. This seems to be in contrast to 

those analyzed for human fecal microbiota. In the latter case, no-rank OTUs constituted 

less than 20% of the total OTUs detected when analyzed by the same method (Inoue, 

personal communication). Human-associated bacteria have been studied more 

intensively than those of wild animals for a long time. The database for 

human-associated bacteria is obviously better documented than that for wild animals. To 

some extent, the rumen bacteria of ruminant livestock have been focused so far due to 

their economic importance (Flint et al. 2008, Duan et al. 2009, Jami and Mizrahi 2012).  

This may limit the application of metagenomic analyses on fecal microbiota in wild 

animals particularly mono-gastric animals. Because of this limitation, only the 

phylum-level comparison has been reported so far, which only allows for the rough 

comparison between host animal species and may not allow for characterization in 

detail. As shown in the recent reports based on metagenomic analyses (Ley et al. 2008, 

Bhatt et al. 2013), phylum-level analyses can reveal that the mammals possess nearly 
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the same composition of microbiota. For example, in our study, an elephant has a 

similar composition to those of gorillas and chimpanzees at the phylum level (Fig. 4-2). 

However, its composition was clearly different from those of gorillas and chimpanzees 

when a comparison was made with family-level analyses (Fig. 4-3). And the level of 

diversity in intestinal microbiota of elephant was far bigger than great apes (Fig. 4-1). 

The difference was, in fact, attributable mostly to no-rank OTUs. We believe that 

no-rank OTUs should be analyzed in detail for the better understanding and comparison 

of intestinal microbiota of animals except for humans. To understand the co-evolution 

between the host and its intestinal microbiota, further efforts to isolate and identify the 

unknown bacteria corresponding to no-rank OTUs are of importance. 
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Table 4-1. Pyrosequencing results 

 

*Adapted and modified from Table 1 in Tsuchida et al.2014d. 

 

 

Fig. 4-1. Rarefaction curves of the number of sequence reads of each individual in this 

study 

  

IG PG CH 1 CH 2 EP

Total 16S rRNA gene (nucleotides) 10,065,107 10,121,642 9,684,893 12,706,879 11,724,402

Number of sequence reads 17,437 16,300 15,736 19,503 15,514

Average read length (nucleotides) 414.22 384.81 386.16 386.03 378.87
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Fig. 4-2. Phylogenetic profile of the fecal bacteria at phylum and class levels of (A) IG, 

(B) SBG, (C) CH1, (D) CH2, and (E) EP. Others1, 3, 5, 7, and 9: Other minors belong 

to Firmicutes. Others 10: Other minors belong to Bacteroidetes. Others were the phylum 

and class whose percentages accounted for <5%. No rank indicates the sequences 

unidentified by BLAST search. 

*Adapted and modified from Fig 1 in Tsuchida et al.2014d. 
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Fig. 4-3. Phylogenetic profile of the fecal bacteria at family level of (A) IG, (B) SBG, 

(C) CH1, (D) CH2, and (E) EP. Others were the families whose percentages accounted 

for <1%. No rank indicates the sequences unidentified by BLAST search. 

*Adapted and modified from Fig 2 in Tsuchida et al.2014d. 
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Fig. 4-4. Comparison of the relative abundance of the fecal microbiota in each 

individual using weighted UniFrac. 

*Adapted and modified from Fig 3 in Tsuchida et al.2014d. 
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Chapter 5 

General discussion and Conclusion 

 

5-1 General discussion 

In this study, the author discovered one novel species of bifidobacteria and one 

novel species of lactobacilli in western lowland gorillas using culture-dependent 

methods.  

In chapter 2, Bifidobacterium moukalabense sp. nov., which was isolated from 

wild western lowland gorillas, central chimpanzees, and a forest elephant in MDNP, is 

described. Gorillas, chimpanzees, and forest elephants in MDNP are sympatric, 

depending on nearly the same food varieties. B. moukalabense were isolated from all 

gorilla feces during the study (from 2009 to 2013). These bifidobacteria are distinctive 

on the BS plate, producing orange-colored colonies. Although this bifidobacterium was 

isolated from the feces of chimpanzees and elephants, not all feces of these animals 

carried these particular bifidobacteria. Therefore, it is suggested that B. moukalabense 

was a gorilla-specific autochthonous intestinal bacteria in MDNP. B. moukalabense 

belongs to B. adolescentis-phylogenetic group, which includes B. adolescentis, B. 

catenulatum, B. pseudocatenulatum, B. dentium, and B. angulatum as members 

(Sgorbai and London 1982). Three species—B. adolescentis, B. catenulatum, B. 

pseudocatenulatum—in this group are detected in human feces with a high frequency; 

therefore, these three species are considered autochthonous intestinal bacteria of 

humans (Matsuki et al. 1999, Turroni et al. 2009, Mitsoka 1990). In previous studies, 

substantial amylolytic activity was detected in these three bifidobacteria (Crittenden et 

al. 2001).  B. angulatum and B. dentium were occasionally detected in humans 



55 

 

(Matsuki et al. 1999, Lamendella et al. 2008), and several strains of B. angulatum were 

isolated from wild chimpanzees in Bossou, Guinea (Ushida et al. 2010). B. 

moukalabense, as a novel species belonging to B. adolescentis-group, is mostly 

associated with wild western lowland gorillas. According to the host range of these six 

species of bifidobacteria, it is suggested that the speciation of bifidobacteria, 

particularly those belonging to the B. adolescentis group, occurred within the human 

GIT. B. moukalabense is actually carried by wild gorillas, with occasional horizontal 

transmission to sympatric members in the African rain forest. As mentioned above, 

chimpanzees and elephants seem not to be specific hosts of B. moukalabense, due to its 

relatively low frequency. Chimpanzees, rather, carry more human-associated 

bifidobacteria, and elephants are not true hosts for the bifidobacteria. Gorillas are 

frugivores/folivores with the occasional ingestion of insects (Tutin and Fernandez 1993, 

Yamagiwa and Basabose 2006). They have apparently kept the eating habits of the 

common ancestor of humans and gorillas. Chimpanzees also rely on fruits and leaves, 

but they eat substantial amounts of animal meat (Mitani and Watts 2001, Gilby 2006). It 

is noteworthy that early humans, Homo habilis and H. erectus, were hunter-gatherers 

who relied substantially on animal meat (McHenry and Coffing 2000, Leonard et al. 

2003). Our ancestors became omnivores. After agriculture began some 12,000 years ago, 

our ancestors started increasing their consumption of starch-rich foods (Salamini et al. 

2002). Bifidobacteria in the human GIT may have speciated (or diversificated) 

tremendously in adapting to such tremendous changes in food habits (from 

frugivores/folivores to omnivores) and digestive system (teeth, in particular) of the 

hosts. At present, we are analyzing the genomic structure of several strains of B. 

moukalabense (Tsuchida et al. 2014b). Our preliminary results indicate that the genome 
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of this species is larger (ca. 2.5 Mb) than that of human-associated bifidobacteria (< 2.0 

Mb). The original genes that differentiate B. moukalabense from other 

human-associated bifidobacteria are mostly hypothetical proteins or unknown, although 

some particular functionalities were assigned by KEGG and COG, such as anthranilate 

phosphoribosyltransferase, dihydroorotate dehydrogenase, hydantoin racemase, and 

hydantoinase.        

As shown in chapter 3, the author succeeded in isolating and identifying 

Lactobacillus gorillae sp. nov. from the feces of captive and wild western lowland 

gorillas. This novel species of lactobacilli is, therefore, considered to be an 

autochthonous intestinal bacterium of western lowland gorillas.  

L. gorillae belongs to the L. reuteri-phylogenetic group. L. reuteri are 

repeatedly isolated from carnivores/omnivores, including humans; it is considered that L. 

reuteri are allochthonous intestinal bacteria in carnivore/omnivore animals. Herbivores 

are not the major host of this group of lactobacilli (Endo et al. 2010). Within this group, 

L. fermentum, the closest neighbor of L. gorillae, was isolated from humans with a high 

frequency; however, this species was rarely isolated from other animals. L. fermentum is, 

therefore, considered to be an autochthonous intestinal bacterium in humans. As 

discussed above, B. moukalabense is categorized in the human-associated B. 

adolescentis group, and its closest neighbor, B. dentium, is a typical human-type 

bifidobacterium. L. gorillae is categorized in the L. reuteri group, whose host range is 

wider than that of the B. adolescentis group. However, the closest neighbor of L. 

gorillae is L. fermentum, a typical human-associated lactobacillus. Considering the 

phylogenetic relationship between gorillas and humans, an analogy is suggested 

between the host relationship (gorilla vs human) and the relationship between 
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autochthonous lactic acid bacteria (B. moukalabense vs B. dentium, L. gorillae vs L. 

fermentum). Since L. reuteri has a wide range of hosts, this species is considered rather 

universal, not having a specific host among carnivores and omnivores (Mitsuoka 1992). 

However, the presence of host-specific strains of L. reuteri has been demonstrated 

(Casas and Dobrogosz 1997). It is plausible that the speciation of L. reuteri occurred to 

adapt to its wide range of animal hosts. This may be true for L. gorillae. According to 

phylogenetic, phenotypic, and physiological analyses in chapter 3, 16S rRNA gene 

sequences and pheS gene sequences of strains of L. gorillae were almost identical. 

Interestingly, ribotyping analyses showed that one strain from a captive adult male 

gorilla (KZ03) has the exact same ribotype pattern as does strain GG02 from a wild 

individual. Furthermore, this captive gorilla harbored the strain KZ02 that showed the 

same ribotype pattern as did strain KZ01
T
, isolated from a captive adult female gorilla. 

From phenotypic analyses, GG02 and KZ03 both showed similar sugar utilization 

patterns, while KZ01
T
 and KZ02 showed sugar utilization patterns similar to that of L. 

fermentum. GG02 and KZ03 could degrade D-xylose, arbutin, cellobiose, and trehalose, 

but KZ01
T
 and KZ02 could not degrade these substrates. Considering the food in the 

wild, utilization of D-xylose, cellobiose, and arbutin is of importance because D-xylose 

and cellobiose constitute hemicelluloses and cellulose of the cell walls of plants, and 

arbutin is phenol glycoside that has cytotoxicity and antibacterial activity and is 

contained in wild fruit and leaves such as Pyrus spp. (Kundaković et al. 2014). The 

natural diet for gorillas in the wild should be more fibrous and richer in anti-nutritional 

compounds such as phenol glycoside than food offered in conditions of captivity. The 

ability of wild ribotypes, represented by GG02 and KZ03, to degrade polymer 

constituents and plant toxin suggests the adaptation of these strains to wild feeding 
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conditions more than other ribotypes, represented by KZ01
T
 and KZ02. There was a 

difference in NaCl tolerance between strains from captive individuals (KZ01
T
, KZ02, 

and KZ03) and wild individuals (GG02). The former showed substantially higher 

tolerance to NaCl, which may be induced by regular food in zoos that contains 

sufficient amounts of minerals, while in wild conditions, Na is often depleted from 

gorillas’ food, leading gorillas to selectively ingest unusual foods such as decayed wood 

(Rothman et al. 2006, Yamagiwa et al. 2005). It is suggested that the phenotypes and 

ribotypes of the strains have changed with the change in the food consumed. This may 

be a case of speciation of the species, but further elucidation at the level of genome on 

these L. gorillae isolates seems to be indispensable.  

In chapter 4, the author characterized the intestinal microbiota of gorillas, 

chimpanzees, and elephants living sympatric in MDNP, using culture-independent 

methods. In previous studies, using metagenomic analysis, Bacteroidetes and Firmicutes 

were shown to be the major intestinal bacterial phyla of various mammals, including 

gorillas, chimpanzees, and elephants in the wild and in captivity (Ley et al. 2008, 

Moller et al. 2013). The results of this study also demonstrate that Firmicutes and 

Bacteroidetes were the most common intestinal bacteria for gorillas, chimpanzees, and 

forest elephants at the phylum level. At the class level, Clostridia and Bacteroidia were 

common intestinal bacteria for all animals studied, a result that is almost identical to 

those shown in previous studies (Ley et al. 2008, Moller et al. 2013, Dougal et al. 2013, 

Caporaso et al. 2011). In the case of chimpanzees, however, Erysipelotrichi was also 

detected as the major class of their intestinal microbiota. In the literature, Erysipelotrichi 

was recognized common member of various intestinal microbiota (Handl et al. 2011, 

Zhang and Chen 2010, Peris-Bondia et al. 2011). It is noteworthy that this particular 
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class increased in response to a high fat diet in mice (Greiner et al. 2011). Chimpanzees 

consume more animal proteins as compared with gorillas and forest elephants. Such an 

eating habit may affect the development of bacteria belonging to the Erysipelotrichi 

class.  

One of the most striking observations about this NGS-based metagenome is the 

higher diversity of elephant microbiota as compared to those of chimpanzees and 

gorillas. However, the composition of intestinal microbiota of a forest elephant is far 

more ambiguous than those of chimpanzees and gorillas; no-rank OTUs, even at the 

phylum level, covered from 14% (SBG) to 36% (EP) of the total sequences obtained in 

each animal, constituting the richest OTUs of all animals. In this study, no-rank OTU 

means the presence of unknown bacteria even at the phylum level in these wild animals. 

Gorillas and chimpanzees are primates and our evolutionary neighbors. Perhaps, they 

share the bacteria first detected in human feces at a substantial level. Accordingly, the 

majority of sequences in gorillas and chimpanzees raised by this metagenomic analyses 

can be identified with databases in which human intestinal bacteria have been deposited 

more intensively than those from other sources. However, no-rank OTUs still constitute 

the largest group at the family level for all animals. This may be caused by insufficient 

isolation work for the intestinal bacteria in wild animals. 

  

5-2 Conclusion 

The present study demonstrates the presence of specific intestinal microbiota of 

western lowland gorillas using culture-dependent methods and culture-independent 

methods. A novel species, B. moukalabense sp. nov., can be considered to be 

gorilla-specific autochthonous intestinal bacteria with an occasional horizontal transfer 
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from gorillas to other sympatric animals in MDNP. Since this species has a close 

phylogenetic relationship with the human-type bifidobacterium B. dentium, genomic 

comparison between B. moukalabense and B. dentium (or B. catenulatum or B. 

pseudocatenulatum) would make clear the adaptation of bifidobacteria to the human 

GIT and the reasons for vast speciation of bifidobacteria in humans.  

A novel species, L. gorillae sp. nov., was a gorilla-specific autochthonous 

intestinal bacterium. This bacterium also has a close phylogenetic relationship with the 

human-type lactobacillus, L. fermentum. Again the genomic comparison between L. 

gorillae and L. fermentum would make clear the adaptation of lactobacillus to the 

human GIT.   

The culture-independent metagenome showed the host-specific intestinal 

microbiota, though these species are living in a relatively narrow area and foraging for 

quite similar food resources. Unfortunately, bifidobacteria were technically omitted by 

the present approach using amplification of the V1–V3 region of the 16S rRNA gene. 

Further precise study should be conducted to match a culture-dependent approach and a 

culture-independent approach toward wild animals. 
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Summary 

 

Chapter 1 

Intestinal microbiota of the mammal develop a very complex ecosystem with 

vast diversity after birth, which show large differences among animal species and 

individuals. Such an ecosystem may evolve in a host-specific manner. The host-specific 

development of intestinal microbiota is probably caused by the host’s digestive system 

and food habits. Especially, some in bifidobacteria and lactobacilli species should be 

regarded as allochthonous intestinal bacteria, although it is still difficult to reveal how 

and what kind of selection was applied to the intestinal bacteria for the establishment of 

such host-specific intestinal microbiota.  

In this chapter, the author explained the aims of this study. The first aim was to 

investigate lactic acid bacteria in non-human wild primates to characterize host-specific 

lactic acid bacteria in wild and captive western lowland gorillas in Moukalaba-Doudou 

National Park (MDNP), Gabon, because further comparisons of gorilla-specific lactic 

acid bacteria and those in humans may reveal the diversification and selection of lactic 

acid bacteria in the human GIT.  

The second aim of this study was to evaluate environmental effects on 

intestinal microbiota. In this respect, the author intended to study the intestinal 

microbiota of western lowland gorillas, central chimpanzees, and a forest elephant in the 

wild using pyrosequencing analyses because gorillas and chimpanzees at our study site 

are sympatric, depending on nearly the same food varieties. 

 

Chapter 2 
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Gram-staining positive anaerobic rods were isolated from the feces of a wild 

lowland gorilla, central chimpanzees, and a forest elephant in MDNP, and these isolates 

were taxonomically investigated. Based on phylogenetic analyses and specific 

phenotypic characteristics, these strains belonged to the genus Bifidobacterium. 

Phylogenetic analysis of its 16S rRNA gene sequence revealed that these isolates form a 

single monophyletic cluster. The hsp60 sequence also supports these relationships. 

Bifidobacterium moukalabense sp. nov. was proposed. This novel species was 

considered to be a major Bifidobacterium in the intestines of wild lowland gorillas, 

chimpanzees, and elephants in MDNP. 

 

Chapter 3 

Gram-staining positive anaerobic rods were isolated from the feces of captive 

and wild western lowland gorillas. These strains were taxonomically investigated. 

Phylogenetic analysis based on 16S rRNA gene sequences and specific phenotypic 

characteristics demonstrated that these strains belong to the genus Lactobacillus reuteri 

phylogenetic group. Phylogenetic analysis of their 16S rRNA gene sequences revealed 

that these isolates form a single monophyletic cluster. The pheS sequences also support 

these relationships. Therefore, based on phylogenetic, phenotypic, and physiological 

evidence, these strains represent a novel species of the genus Lactobacillus, for which 

the name Lactobacillus gorillae sp. nov. was proposed. This novel species is considered 

to be a major Lactobacillus in the intestines of western lowland gorillas. 

 

Chapter 4 

Intestinal microbiota play an important role in digestion and the host’s health. 
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Furthermore, their composition is complex, with large differences between animal 

species. Intestinal microbiota have been intensively studied in humans, whereas those in 

animals, especially in the wild, have not been thoroughly studied. In this chapter, I 

focused on the intestinal microbiota of wild western lowland gorillas, chimpanzees, and 

an elephant in MDNP by using pyrosequencing analysis for understanding their 

characteristics. In almost all animal feces, Prevotellaceae, Clostridiaceae, and 

Lachnospiraceae were detected as major bacterial families. At the genus level, no-rank 

Operational Taxonomic Units (OTUs), 80%–90% identities with known sequences, 

covered a major fecal microbiota, which seemingly determined the enterotype of the 

host. However, in principal coordinate analysis using weighted UniFrac, their fecal 

bacteria were clustered by the species of the host. The result of the present study 

suggests that it is necessary for no-rank OTUs and minor populations of fecal bacteria 

to be analyzed in detail to understand the true characteristics, such as functionality, of 

intestinal microbiota. 

 

Chapter 5 

A gorilla-specific B. moukalabense belongs to the B. adolescentis-phylogenetic 

group that includes mostly human-associated bifidobacteria. The scientific value of this 

novel species was discussed in this chapter. Genomic comparison between B. 

moukalabense and the B. adolescentis-phylogenetic group would clarify the adaptation 

of bifidobacteria to the human GIT and the reasons for the vast speciation of 

bifidobacteria in humans. Gorilla-specific L. gorillae belongs to the L. 

acidophilus-phylogenetic group that includes mostly human-associated lactobacilli. Our 

isolates showed the small difference; one strain from a captive gorilla (KZ03) has the 
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completely same ribotyping pattern as strain GG02 from a wild individual, and these 

strains degrade polymer constituents and plant toxins. It is suggested that the 

phenotypes and ribotypes of the strains have been changed with the change in diet. This 

may be a case of speciation of the species, but further elucidation at the genome level of 

these L. gorillae isolates seems to be indispensable. 

 The common intestinal bacteria for gorillas, chimpanzees, and forest 

elephants at various classification levels were discussed in this chapter. The composition 

of intestinal microbiota of a forest elephant was discussed. Its composition was far more 

ambiguous than those of chimpanzees and gorillas; no-rank OTUs, even at the phylum 

level, covered from 14% (SBG) to 36% (EP) of the total sequences obtained in each 

animal, constituting the richest OTUs in all animals. No-rank OTUs in this study mean 

the presence of unknown bacteria, even at the phylum level, in these wild animals. 
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