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Chapter 1

General introduction

Amino acids constitute proteins and are primary
components of the human body. A total of 20 amino acids are
needed for the synthesis of proteins, of which 9 are not
synthesized by humans and are called essential amino acids (31).
Hence, intake of essential amino acids via consumption of
various foods is necessary. Among these essential amino acids,
leucine, isoleucine, and valine are collectively referred to as
branched-chain amino acids (BCAA) owing to their branched
structures. Primary sources of BCAA are animal and plant
proteins. Animal protein contains leucine (7-9%), isoleucine (3-
6%), and valine (4-6%) in the approximate ratio of 2:1:1 (18-20,
27). Recently, BCAA are obtained from supplements other than
food items.

The balance of amino acids in diet is very important. It is
well known that addition of one or some amino acids to a low
protein diet could cause growth retardation in experimental
animals (2, 13, 15, 21, 23-25). Additionally, administration of an
excess amount of amino acid could decrease body weight, damage
various organs and tissues, and in some serious cases, result in
death (2, 23). In particular, the addition of an excess amount of
leucine causes decreased food intake and growth retardation in
experimental animals (13, 24). However, the underlying
mechanism is not yet clear. In chapter 2 and 3, | examined this

mechanism to gain further insights.
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It was found that amino acids have various functions in
addition to being the building blocks of proteins (3, 9, 12, 28,
30-32). Notably, leucine promotes protein translation in the
following manner: leucine activates protein kinase mammalian
target of rapamycin (mMTOR) and increases the phosphorylation
of eukaryotic initiation factor 4E-binding protein (4EBP) (3, 33).
However, the mechanism by which cells recognize and respond to
leucine is not clear (10, 16, 17). As mTOR s reportedly
associated with peroxisome proliferator-activated receptor-y
coactivator-la (PGC-1a) (8), | examined the potential
contribution of PGC-la in leucine-activated mTOR (4EBP)
signaling in chapter 4.

Another important role of amino acids is that they also act
as important energy sources. Most amino acids are metabolized
in the liver, but BCAA are metabolized primarily in skeletal
muscles (11). BCAA contribute to energy production in skeletal
muscles in human during exercise (1, 11). BCAA supplementation
has been reported to improve endurance performance (4-7, 22).
Mice that lacked the capacity to degrade BCAA showed decreased
endurance performance (26). It was observed that transgenic mice
overexpressing PGC-1a in skeletal muscles showed increased
running capacity with concomitant upregulated expression of
branched chain aminotransferase 2 and branched chain a-keto
acid dehydrogenase and decreased blood and muscle BCAA
concentrations (14, 29). However, the mechanisms by which
BCAA improves exercise performance remain unclear. In chapter
5, 1 examined whether increased PGC-la-mediated BCAA

degradation is required for enhanced endurance performance
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after BCAA supplementation.
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Chapter 2

Asparagine synthetase and 3-phosphoglycerate dehydrogenase
downregulation in rat liver caused by excess leucine intake

are not associated with leucine-caused growth retardation

Introduction

It is well known that leucine is not only a component amino
acid of proteins, but also a signaling molecule, promoting
protein synthesis and inhibiting protein degradation (2, 3, 19,
31). Because of these roles, leucine is used as a supplement to
activate muscle protein synthesis. Although the supplemental
intake of amino acids is considered to be safe, the intake of
indispensable amino acids such as leucine or methionine causes
anorexia, growth retardation and a fatty liver under low-protein
dietary conditions in animal experiments (12, 13, 27). These
phenomena are called amino acid “imbalance”, i.e.,
supplementation of a single indispensable amino acid decreases
the nutritive value of a low-protein diet rather than increases it
(15, 29). Although there have been many reports concerning
amino acid imbalance, the mechanism causing it is not yet clear.

Recently, using an animal model, | assessed the safe level
of leucine intake from the viewpoint of gene expression (18).
The results demonstrated that the tolerable upper intake level of
supplemental leucine is 2% of the diet of rats maintained on 6%
casein as the sole protein source. Supplementation of leucine at
over 2% of the diet reduced food intake and body weight gain.

The pathway analysis after the cDNA microarray analysis of the
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rat liver showed that leucine most significantly affected the
metabolism of alanine and aspartate, in addition to the
metabolism of glycine, serine and threonine.

It has been reported that asparagine synthetase (AS, EC
6.3.1.1) and 3-phosphoglycerate dehydrogenase (PHGDH, EC
1.1.1.95) are markedly induced in the liver of rodents that are
fed a low-protein diet (14, 16).

The mammalian AS is the only enzyme that catalyzes
asparagine synthesis and converts aspartate and glutamine to
asparagine and glutamate, respectively, in an ATP-dependent
manner (4, 5). The required amount of asparagine is usually
sufficiently provided by biosynthesis; hence, asparagine is
considered to be a dispensable amino acid. However, weaned rats
that were fed an asparagine-deprived diet showed growth
retardation. This growth retardation recovered within several
days after asparagine deprivation, probably because of the
induction of AS in the liver (26). It has also been reported that
when cells lacking a functional AS are exposed to asparaginase
(EC 3.5.1.1), they undergo cell cycle arrest in G1, and in some
cases such as acute lymphatic leukemia (ALL), die by apoptosis
(28). Thus, asparaginase has been used as a therapeutic drug
against ALL (25). These studies indicate that de novo synthesis
of asparagine by AS is essential for survival when the
availability of asparagine is insufficient to fulfill cellular
metabolic demands.

Although there are two ways to synthesize serine - the
phosphorylation pathway and the combined action of the glycine

cleavage system and serine hydroxymethyltransferase - it is

8



primarily synthesized by the phosphorylation pathway. In the
first step of the phosphorylation pathway, 3-phosphoglycerate
derived from glycolysis is metabolized into
phosphohydroxypyruvate by PHGDH, a rate-limiting enzyme.
Yoshida et al. have successfully generated PHGDH-knockout
mice and demonstrated that systemic PHGDH-knockout embryos
die 13.5 days post coitum (33), whereas brain-specific
PHGDH-knockout mice are viable despite microcephaly (32).
These results clearly showed that the serine provided from the
mother did not satisfy their requirement and the fetus needs the
de novo synthesis of most of the serine for tissue growth and
development. Recently, significant upregulation of PHGDH
expression was observed in proliferating, differentiating and
neoplastic tissues (21, 24). Thus, these results suggest that the
expression of PHGDH is critical for serine de novo synthesis to
fulfill the cellular requirement of serine for growth and
differentiation.

In contrast to a low-protein diet, a high-protein diet
induces serine dehydratase (SDH, EC 4.2.1.13). SDH s
expressed specifically in the liver and kidneys, and catalyzes
serine and threonine to produce pyruvate and a-ketobutyrate,
respectively. It has been reported that SDH in the liver plays an
important role in serine catabolism and contributes to 90% of
serine degradation (30). Comparing growing rats with mature
rats, lwami’s group has demonstrated that SDH expression in the
liver is induced by protein intake beyond their protein
requirement (17, 20). It thus shows that the induction of SDH is

closely related to protein nutrition. Zhong et al. have also
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revealed that SDH is strongly induced by the intake of leucine,
compared to that of other branched-chain amino acids (BCAA)
(34), suggesting that leucine contributes to the regulation of
SDH expression.

Marked induction of AS and PHGDH in the liver by a
low-protein diet and of SDH by a high-protein diet is considered
to be a very important adaptive mechanism to abnormal protein
nutrition. If leucine disturbs the expression of these genes, it
may affect the growth of animals. For this reason, | examined AS,
PHGDH and SDH expression in relation to leucine-induced amino

acid imbalance.

Materials and Methods
Animals

Male Sprague-Dawley rats (10 weeks old) were purchased
from Japan SLC. (Shizuoka, Japan). They were housed
individually in stainless-steel cages in an air-conditioned room
at 23°C = 1°C with a 12-h light/dark cycle (lights on from 08:00
to 20:00). Rats were acclimated for 3 or 4 days and provided ad
libitum access to water and a 20% casein diet based on AIN-93G
(18). Then, the rats were assigned to the experimental groups
described below. Food intake and body weight were measured
daily. Growth rate was calculated by dividing initial body weight
into final body weight of the experiment. The range of the initial
body weight was 280-320 g. AIll experimental methods were
approved by the Animal Experiment Committee of Kyoto
Prefectural University and The University of Tokyo. All the rats

were managed in line with the “Guidelines for Care and Use of
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Laboratory Animals”.

Experimental design

In this study, | used 10-week-old rats in which the protein
requirements are fulfilled by ingestion of a 10-12% casein diet
(17, 20).

Experiment 1 Rats (n=72) were divided into 12 groups and
fed a diet containing 6% (low), 12% (normal) or 40% (high)
casein supplemented with 0, 2, 4 or 8% leucine (kindly provided
by Ajinomoto, Kanagawa, Japan) for 1 week. The composition of
the experimental diets is described elsewhere (18). The rats were
allowed free access to food and water during the experimental
period.

Experiment 2 Rats (n=72) were fed a 6, 12 or 40% casein
diet for 1 week. Food was given ad libitum from 20:00 to 08:00
and water was available at all times. Each casein diet group was
separated into four groups and orally administrated leucine at 0,
0.13, 0.25 or 0.50 g¢/mL/100 g body weight, at 11:00 daily. The
amounts of administrated leucine corresponded to a 0, 2, 4, 8%
leucine diet based on the assumption that the average intake of
diet was 6 g/100 g body weight/day. The appropriate amount of
leucine was suspended in 0.5% xanthane gum (San-Ei Gen F.F.I,
Osaka, Japan) in phosphate-buffered saline (PBS).

Experiment 3 To examine the specificity of leucine, rats
(n=20) were divided into four groups and fed a 6% casein diet, a
6% casein diet containing 8% leucine, or a 6% casein diet
containing 8% isoleucine or 7.2% valine (equal to 8% leucine on

a nitrogen basis). Food and water were available at all times.
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Sample Preparation

On the final day, the diet was removed at 08:00. The rats
were anesthetized by intraperitoneal administration of sodium
pentobarbital (50 mg/kg body weight) and killed by
exsanguination with transection of the inferior vena cava in a
randomized order at 12:00. The livers were excised, rinsed with

ice-cold PBS, frozen in liquid nitrogen and stored at -30°C.

Quantitative real-time RT-PCR analysis

Total RNA from the Iliver was isolated by the acid
guanidinium isothiocyanate-phenol-chloroform method as
described elsewhere (7). Total RNA (10 ng) was used for the
reverse transcription reaction using the PrimeScript™ RT
reagent Kit (Takara Bio, Siga, Japan), according to the
manufacturer’s protocol. Quantitative PCR was performed using
SYBR Premix Taq™ Il (Takara Bio, Siga, Japan) with
Rotor-Gene Q (Qiagen, Hilden, Germany). The expression levels
of AS, PHGDH, SDH and B-actin were measured individually. To
normalize, the relative expression level of AS, PHGDH and SDH
was obtained by dividing their expression levels by the
expression level of p-actin, which is a housekeeping gene.
Primers used for cDNA amplification:
AS Fw, 5'- ACTGCTGTTTTGGCTTC -37;
AS Rv, 5'- TCTCACCGTCCACATTG -3';
PHGDH Fw, 5'- TCTGAAGAATGCTGGGACCT -3';
PHGDH Rv, 5'- GCTTAGCGTTCACCAAGTTCA -3';
SDH Fw, 5'- TCACCAGTGTTGCCAAGG -3';
SDH Rv, 5'- TCGTCTACGAACTTCTCG -3’ and
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B-actin Fw, 5'- CTACAATGAGCTGCGTGTGG -37;

B-actin Rv, 5'- ATGGCTACGTACATGGCTGG -3".
Pre-incubation was performed at 94°C (PHGDH) or at 95°C (AS,
SDH and p-actin). The thermal cycling conditions for AS,
PHGDH, SDH and B-actin are summarized in Table 1.

Table 1. Thermal cycling parameters for primer optimization. The thermal cycling conditions for AS, PHGDH, SDH and p-actin.

Gene Temperature (°C) Time (s) # of cycles

95 10

AS 58 30 50
72 45
95 4

PHGDH 60 20 45
72 30
95 5

SDIT 53 30 45
72 30
94 1

B-actin 62 20 35
72 30

Western blot

Liver (300 mg) was homogenized in a buffer comprising 0.1
M potassium hydrogen phosphate, 0.1 M potassium
dihydrogenphosphate, pH 8.0, 1 mM EDTA, 0.1 mM
[(4-formyl-5-hydroxy-6-methylpyridin-3-yl) methoxy]
phosphonic acid, 1 mM (2S5,3S)-1,4-bis (sulfanyl)
butane-2,3-diol and 0.5 mM phenylmethanesulfonyl fluoride

using a Polytron homogenizer. Insoluble material was removed
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by centrifugation for 30 min at 4°C and 10,000 g, and the
supernatant was centrifuged for 60 min at 4°C and 100,000 g. The
protein concentration was measured using the Lowry method.
Equal amounts of protein were separated by SDS-PAGE and
transferred to PVDF membranes (Merck Millipore, Darmstadt,
Germany). The membranes were blocked with 5% skim milk in
PBS containing 0.1% Tween 20 (blocking buffer) for 1 h at room
temperature. The membranes were reacted with primary
antibodies (AS: Epitomics, California, USA; PHGDH: supplied
by Furuya S.; SDH: Sigma-Aldrich, Missouri, USA; p-actin:
Imgenex, California, USA) diluted 1:1,000 in blocking buffer
overnight at 4°C or for 1 h at room temperature. The blots were
washed 3x10 min with PBS containing 0.1% Tween 20, and then
incubated with secondary antibodies (anti-rabbit horseradish
peroxidase: Vector Laboratories, California, USA) diluted
1:1,000 in blocking buffer for 1 h at room temperature. The blot
was washed 3x10 min with PBS containing 0.1% Tween 20, and
then chemiluminescence was detected with an image analyzer

(LAS-1000, Fuji Film, Tokyo, Japan).

Statistical analysis

Data were expressed as mean = SD. Data were tested by
two-way ANOVA, to analyze the casein and leucine effect (8).
Tukey-Kramer tests for multiple comparisons were performed to
determine the significance of differences (8). A difference was
considered significant at P < 0.05. The analysis was performed
by JMP 5.1.2 for Macintosh computers (SAS Institute, North
Carolina, USA).
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Results

Effects of leucine administered with diet or by oral
supplementation between meals on food intake and growth rate of
rats (Experiments 1 and 2)

I examined the effects of varying amounts of leucine given
with the diet or orally on the food intake and growth rate of rats
maintained on a 6, 12 or 40% casein diet. Two-way ANOVA
revealed a significant effect of leucine on the food intake and
growth rate of rats when it was included in the diet (Table 2), but
not when given orally (Table 3). However, there was a significant
interaction between casein and leucine in both the administration
methods; thus, | performed multiple comparisons to determine
the significance of the differences (Table 2, 3). The results
showed that leucine supplementation in the diet significantly
decreased the food intake and growth rate in a dose-dependent
manner in the 6% casein groups, but not in the 12 or 40% casein
groups (Table 2). Namely, the food intake of the rats fed a diet
containing 8% leucine decreased to 46% compared with that of
the rats fed a 6% casein diet without leucine addition. Similarly,
the growth rate decreased to 0.89 = 0.04 when given a diet
containing 8% leucine (Table 2). However, in contrast to the diet
containing leucine, there were no significant differences within
the 6, 12 and 40% casein diet groups when leucine was

supplemented orally (Table 3)
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Table 2. Food intake and growth rate of rats fed a 6, 12 or 40% casein diet containing 0, 2, 4 or 8% leucine

Caseine Leucine Food intake Body weight Growth rate
Beginning End
(%) (%5) (g/100 g B.W./day) () (Fold)
0 6.3+0.42® 326.6+8.1 352.1+12.6 1.08+0.02*
2 6.3+0.8% 318.4+13.0 343.1+25.2 1.08+0.04*
o 4 5.1£0.5¢ 325.7+£10.5 326.7+£10.2 1.00+£0.04¢"
8 2.9+1.04 327.0£15.6 290.9+18.5 0.89+0.04°
0 5.2+0.6°° 326.3£7.8 345.2£8.2 1.06+0.03%"
2 5.7£0.22bc 325.5+15.1 355.0+16.3 1.09+0.02*
12 4 5.6£0.5%bc 326.0+7.5 360.2+£10.7 1.11+£0.04°
8 5.3+£0.83%c 321.7£6.1 347.8x7.3 1.08+0.032
0 5.2+0.42%b¢ 327.5+6.7 358.4+3.4 1.09+0.01¢2
2 5.2+0.5°¢ 319.2+£10.9 345.7£13.7 1.08+0.03°®
40 4 5.3£0.3%bc 322.5x10.1 345.4+11.8 1.07+£0.02*
8 5.1+0.2°¢ 326.5+13.7 352.0+20.7 1.08+0.02°
Statistical significance

Casein NS P < 0.001

Leucine P <0.001 P < 0.001

Casein = Leucine P < 0.001 P < 0.001

Values are mean = SD. n = 6. Data were tested by two-way ANOVA, to analyze the casein and leucine effect. When a significant
interaction was detected, Tukey-Kramer tests for multiple comparisons were performed to determine significance of differences
among individual groups. Labeled values in the same column without a common letter are statistically different, P < 0.05.
!Original data used were the same as Figure 1 cited in reference (Imamura et al. 2013), and were recalculated to evaluate the

effect of casein and leucine on growth of rats by two-way ANOVA.
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Table 3. Food intake and growth rate of rats fed a 6, 12 or 40% casein diet and subjected to oral administration of leucine

Casein Leucine Food intake Body weight Growth rate
Beginning End
(%) (g/100g B.W.) (2/100 g B.W /day) () (Fold)
0.00 5.1=0.32P 322.6x11.3 338.1=18.1 1.03+0.022®
0.13 5.9+£0.3° 322.8+6.9 341.3+15.0 1.05+0.032®
¢ 0.25 5.7+£0.32® 319.4+4.0 329.7<10.8 1.03=0.02%?
0.50 5.0=0.6° 322.1+9.3 321.6=12.3 0.99+0.03"°
0.00 4.8=0.3° 318.1+6.9 333.2=5.9 1.04=0.03z2?
0.13 5.0+£0.8%° 320.5+8.1 330.7£24.0 1.03=0.062"
12 0.25 5.1=0.62® 315.0+14.8 322.8£23.6 1.02+0.03¢2®
0.50 5.6=0.4°%® 319.5+6.3 342.4=12.0 1.07+£0.03®
0.00 5.0£0.32® 324.9+4.7 346.6=5.8 1.06x0.02*
0.13 4.9£0.4° 322.5+10.6 338.5+£12.3 1.04+£0.01%®
0 0.25 5.2=0.432® 320.4+£5.3 347.8=£7.0 1.08+£0.01°2
0.50 4.9+0.42¢ 321.3£5.5 337.5=1.9 1.04+0.022®
Statistical significance
Casein P=0.027 P=0.041
Leucine NS NS
Casein = Leucine P=0.008 P=0.006

Values are mean = SD. n = 3—6. Data were tested by two-way ANOVA, to analyze the casein and leucine effect. When a significant
interaction was detected, Tukey-Kramer tests for multiple comparisons were performed to determine significant differences among

individual groups. Labeled values in the same column without a common letter are statistically different, P < 0.05.
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Fig. 1. Effects of diet and oral administration of leucine on AS, PHGDH and SDH mRNA expression in the rat liver.
(A) Rats were fed a 6, 12 or 40% casein diet containing 0, 2, 4 or 8% leucine for 1 week. (B) Rats fed a 6, 12 or 40%
casein diet were subjected to oral administration of leucine at 0, 0.13, 0.25 or 0.50 g/100 g body weight for 1 week.
Data were tested by two-way ANOVA, to analyze the casein and leucine effect. Results are shown in figures,
respectively. When a significant interaction was detected, Tukey-Kramer tests for multiple comparisons were
performed to determine the significance of'the differences among individual groups. Values are mean + SD. n = 3—6.
Labeled values without a common letter are statistically different, P < 0.05
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Leucine either administered with diet or orally between meals
similarly affected the expression of AS, PHGDH and SDH
(Experiments 1 and 2)

Gene expression measured by quantitative real-time PCR
was analyzed by the two-way ANOVA. The result indicated that
both casein and leucine affected the expression of AS, PHGDH
and SDH mRNA. Leucine administered either with the diet or
orally between meals decreased the high expression of AS and
PHGDH that was induced by the 6% casein diet in a
dose-dependent manner. On the other hand, the SDH expression
was induced by the 40% casein diet, and leucine increased the

SDH mRNA expression in a dose-dependent manner (Fig. 1A, B).

Specific effects of leucine among the BCAA on AS, PHGDH and
SDH gene expression (Experiment 3)

I fed rats with a leucine, isoleucine or valine diet,
containing the same amount of nitrogen. The effect of isoleucine
and valine was marginal compared with that of leucine on the
food intake and growth rate of rats (Table 4). Leucine suppressed
the food intake to 50% compared with that in the control, and
decreased the growth rate to 0.89 = 0.05. However, isoleucine
and valine suppressed the food intake to 80% compared with that
in the control, and the growth rate was 1.06 £ 0.02. The data
indicated that among the BCAA, excess leucine intake strongly
suppressed food intake and weight gain. Moreover, compared
with leucine, isoleucine and valine had weaker effects on the
expression of AS and PHGDH mRNA, and they did not induce
SDH mRNA expression (Fig. 2A). These changes in the mRNA
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levels were accompanied by similar changes in protein levels

(Fig. 2B).
Table 4. Food intake and growth rate of rats fed with branched-chain amino acids
Body weight
Group Food intake Beginning End Growth rate
(2/100 g B.W./day) (2) (Fold)

Control 6.4x0.4%2 355.2+11.5 406.1£21.3 1.13+0.03%
Leucine 3.3£0.7° 351.5+5.8 315.3£17.5 0.89=0.05°¢
Tsoleucine 5.2+0.2°% 358.0=7.7 379.3£5.4 1.06=0.02°
Valine 5.2+0.2° 350.0+8.7 372.3£10.9 1.06=0.02°

Values are mean £ SD. n = 5. Data were tested using Tukey-kramer tests. Labeled values in the same column without a common

letter are statistically different, P < 0.05.
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Fig. 2 The effects of BCAA on AS,
PHGDH and SDH expression in rat
liver.

(A) AS, PHGDH and SDH mRNA
expression in the liver of rats fed
with a leucine, isoleucine or valine
diet, containing the same amount of
nitrogen. (B) The abundance of AS,
PHGDH and SDH protein in the rat
liver. Tukey-Kramer tests for
multiple comparisons were
performed to determine the
significance of the differences
among individual groups. Values are
mean * SD.n=35. Labeled values
without a common letter are
statistically different, P < 0.05



Discussion

The food intake and growth rate decreased with excess
leucine intake in the 6% casein diet group, but not in the 12 or
40% casein diet groups (Table 2). In contrast, oral administration
of leucine did not significantly change the food intake or growth
rate (Table 3), indicating that the effects of leucine depend on
the timing of administration. On the other hand, both dietary
intake and oral administration of leucine decreased AS and
PHGDH mRNA expression in the 6% casein diet and increased
SDH mRNA expression in the 40% casein diet in a
dose-dependent manner (Fig. 1A, B). The effect of leucine on
gene expression appears to be specific, because isoleucine and
valine did not change the expression of AS, PHGDH or SDH (Fig.
2). Although the expression of AS and PHGDH in rat liver is
known to be induced by a low-protein diet (14, 16), | revealed
here for the first time that leucine downregulates the expression
of AS and PHGDH in vivo.

I hypothesized that changes in AS, PHGDH and SDH
expression contribute to growth retardation in rats during excess
leucine intake. Decreased expression of AS and PHGDH, amino
acid synthesis enzymes, and increased expression of SDH, an
amino acid catabolic enzyme, may cause an amino acid imbalance
Interestingly, although dietary leucine intake caused growth
retardation while oral administration did not, the gene
expression patterns of AS, PHGDH and SDH were similar in both
cases. This suggests that there are no causal relationships
between AS, PHGDH and SDH expression and growth

retardation.
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In rats showing growth retardation, the food intake was
markedly reduced. Cota et al. have reported that intraventricular
administration of leucine suppressed food intake through the
hypothalamic mammalian target of rapamycin (mTOR) activation
(9). Thus, leucine may suppress food intake by activation of the
hypothalamic mTOR pathway. From this point of view, growth
retardation is primarily mediated through the suppression of
food intake. In contrast to dietary leucine, the orally
administered leucine did not cause suppression of food intake,
which could be because of the time of leucine intake. When rats
were given leucine orally between meals, the effect of leucine
was attenuated, and by the next feeding the rats ate a normal
amount. Indeed, plasma leucine transiently increased at 30 min
and returned to the basal level 2 h after oral administration of
BCAA enrichment (10). On the other hand, | did not observe the
decreased food intake caused by an excess amount of leucine
when the rats were fed a 12% or 40% casein diet. Niijima et al.
have reported that the sensitivity of lysine sensors in the
hepato-portal region was 100-fold higher in lysine-deficient rats
than in normal rats (22). Thus, sensitivity of the amino acids
sensors may therefore have increased in the rats maintained on a
6% casein diet.

It has been demonstrated that de novo synthesis of
asparagine and serine was critical for cellular growth and
function (21, 24, 28, 32, 33). AS and PHGDH are known to be
expressed in several tissues at different levels. This suggests
that the expression of these enzymes depends on the metabolic

demand of the tissues for asparagine and serine. If leucine
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changes the expression of AS and PHGDH in respective tissues,
it may affect their physiological function in the tissues. For
example, an adverse effect of leucine on the immune system has
been reported (11). Thus, to further understand the effects of the
leucine-induced amino acid imbalance, it should be determined
whether leucine affects the expression of AS and PHGDH in
tissues other than the liver in relation to the tissue function.
Because the liver is a dominant organ for amino acid
homeostasis, induction of AS and PHGDH seems to be an
adaptation to amino acid deficiency, to provide adequate
asparagine and serine to peripheral tissues to fulfill their
metabolic demand for maintaining cellular functions under
low-protein nutrition. The amino acid response (AAR) pathway, a
signal transduction pathway activated to sense amino acid
deficiency, was found during the study of the induction
mechanism of AS in a cultured cell line. The AAR pathway is
activated by a deficiency in amino acids, particularly
indispensable amino acids, and the translation of the downstream
activating transcription factor 4 (ATF4) is stimulated (6, 23).
ATF4 binds to a specific element called nutrient-sensing
response element-1 (NSRE1), which exists within the AS
promoter, and activates AS transcription. The AAR pathway is
suppressed by addition of a single indispensable amino acid
including leucine to the culture medium. | demonstrated here that
the expression of AS was increased by feeding rats a low-protein
diet, and the induction was suppressed by administration of
leucine, suggesting that the AAR pathway is involved in the

adaptive change in AS in response to protein nutrition in vivo. It
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is conceivable that the concomitant expression of PHGDH and AS
is regulated through the AAR pathway. However, Kanamoto et al.
could not find a putative NSRE1l in the promoter region of
PHGDH with a data base search (data not published). On the
other hand, it has been reported that PHGDH expression in rat
liver is induced by insulin and suppressed by glucocorticoid (1,
14), though there were no reports of hormonal regulation of AS.
Recently, three signal transduction pathways, mTOR, 5'
AMP-activated protein kinase and general control
nonderepressible 2 have been proposed to be involved in amino
acid sensing in the liver, and to coordinately regulate the hepatic
energy metabolic pathway in response to protein intake (8).
Although 1 did not examine the regulatory mechanisms of the
expression of AS, PHGDH and SDH in current study, it seemed
that these enzymes were coordinately expressed in response to
protein nutrition. Clarifying the regulatory mechanism of these
enzymes’ expression may provide wuseful information for
understanding the amino acid-sensing mechanism in the liver and
the adaptive changes in the hepatic amino acid metabolism in

response to protein nutrition.
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Chapter 3

The Vagotomy Alleviates the Anorectic Effect of an Excess Amount of

Dietary Leucine on Rats Fed a Low-protein Diet

Introduction

Leucine has been reported to have a role as a signal factor to
stimulate protein synthesis and inhibit protein degradation in animal
muscles. Leucine is therefore taken by athletes in a relatively high
amount with the expectation of such effects. However, it is also well
known that leucine has an adverse effect on experimental animals. An
excess amount of leucine fed with a low-protein diet has reduced the
food intake and body weight of rats (5, 11). To evaluate the adverse
effects of an excessive leucine intake, | have previously conducted a
study to identify the gene expression markers reflecting such an
excessive intake of leucine by using a microarray analysis. Six genes
known to be regulators of growth or of the cell cycle were identified as
biomarkers of the adverse effects of excessive leucine. The cut-off value
for the biomarker panel indicated that a leucine level of no more than 2%
with 6% dietary protein had no adverse effects, but a level higher than
3% was a potential hazard. A leucine level higher than 3% also showed
growth retardation and a reduced food intake (6). However, the
mechanism for the anorectic effect caused by an excess amount of
dietary leucine fed with a low protein diet had not been elucidated.

The vagal sensory mechanism plays a crucial role in the neural
mechanism for satiation. Afferent fibers of the vagal nerve are an
integral part of the brain-gut axis which take part in feedback loop

controlling food intake induced by presence of food (13). Ohinata et al.
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have demonstrated by using a vagotomy that the orexigenic activity of
zinc was mediated by the afferent vagal nerve in a zinc-deficient rat (10).
| performed a vagotomy in the present study to examine whether the
anorectic effect of an excess amount of leucine was mediated by the

afferent vagal nerve.

Material and Methods
Animals

Nine-week-old male Sprague-Dawley rats (SLC, Shizuoka, Japan)
were individually housed under regulated conditions (23 = 1°C with a
12-h-light/12-h-dark cycle, lights on 08.00-20.00). The rats were
acclimatized for 3 d and provided ad libitum access to a 20% casein
(20C) diet, based on the AIN93G diet described elsewhere (6), (Table 1)
and water. The experiment was approved by the Kyoto University Ethics

Committee for Animal Research Use.

Table 1. Composition of the Diets (%)

Nutrient 20C 6C 6C+8L

Casein 20.0 6.0 6.0
Leucine - - 8.0
Corn starch 60.50 77.41 69.41
Cysteine 3.0 0.09 0.09
Soy bean oil 7.0 7.0 7.0
Cellulose 5.0 5.0 5.0
Mineral mix (AIN-93G) 3.5 3.5 3.5
Vitamin mix (AIN-93) 1.0 1.0 1.0
Total 100.0 100.0 100.0

Experimental procedures
A truncal vagotomy was performed as previously described (10),

the vagal nerves being cut above the hepatic and celiac branch. The rats
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(two normal rats without the surgical operation and three vagotomized
rats) were fed the 20C diet until the vagotomized rats had ingested an
equal amount of the diet to that of the normal rats. The experiment was
started to feed all the rats a 6% casein (6C) diet at 08.00, the food intake
and body weight being measured on the following 2 d at 08.00 every
morning. The rats were next fed the 20C diet for 4 d. The diet was then
changed to the 6% casein diet containing 8% leucine (6C + 8L) at 08.00,
and the food intake and body weight were measured on the following 2 d
as already described. This feeding regimen was conducted twice (Fig.
1A). The vagotomy was assessed by performing a food intake analysis to
treat the rat intraperitoneally with cholecystokinin-octapeptide (CCKS;
Peptide Institute, Osaka, Japan) at a dose of 16 pg/kg of body weight,
since the satiety induced by CCK8 is mediated by the afferent vagus
nerve (2, 8). | confirmed that the vagotomized rats did not show any
significant decrease in their food intake by injecting CCK8 (data not

shown).

Statistical analysis

Results are presented as the mean + SD. The Tukey-Kramer
method was used for multiple comparisons to determine significant
differences, differences being considered significant at p < 0.05. The
analysis was performed by using JMP 5.1.2 for the Macintosh computer

(SAS Institute, North Carolina, USA).

Results and Discussion
Figure 1B shows that the food intake by the normal and
vagotomized rats did not differ by feeding either the 20C or 6C diet. Two

days feeding of the 6C + 8L diet reduced the food intake of the normal
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rats to 40%, whereas only a slight decrease of food intake was apparent

in the vagotomized rats.
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Fig. 1. The Vagotomy Alleviated the Anorectic Effect of an Excess Amount of Dietary Leucine.

A, Outline of the experimental protocol for measuring the food intake. 20C, the 20% casein diet; 6C, the
6% casein diet; 6C + 8L, the 6% casein diet containing 8% leucine. This feeding regimen was conducted
twice. B, Two normal (©, ®) and three vagotomized rats (2, 4) were fed the 6C (©, 2) or 6C+8L (e, 4)
diet. The results of repeated experiments were combined and are shown as the mean £ SD (normal n=4,
vagotomized n=6). Symbols not sharing common letters were significantly different at p < 0.05.

Such gastrointestinal hormones as CCK, glucagon-like peptide 1

(GLP-1) and peptide YY (PYY) have been shown to exert an anorectic

effect through the vagus nerve (7, 12, 14), and the excretion of these

hormones is known to be stimulated by protein and amino acids (1, 3).
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On the other hand, it has been reported that the satiety signal of amino
acids was mediated by vagal chemical sensors in the hepato-portal
region and duodeno-intestinal canal. An intraduodenal infusion of a
large amount of leucine also evoked an excitatory response in the vagal
celiac afferents (9). My current observations suggest that an excess
amount of dietary leucine exerted an anorectic effect through the
afferent vagus nerve, at least in part. It can be speculated that leucine
stimulated the excretion of such gastrointestinal hormones as CCK,
GLP-1 and PYY, and/or directly acted on the vagal chemical sensors.
The direct effect of leucine on the central nervous system has
recently been reported. The central administration of leucine has thus
increased hypothalamic mTOR signaling and decreased the food intake
and body weight (4). Figure 1B also shows that the reduced food intake
by an excess amount of dietary leucine was not completely recovered in
the vagotomized rat. It is therefore possible that part of the anorectic
effect of dietary leucine would be to increase the leucine concentration
in the brain that activates the mTOR pathway to reduce the food intake.
However, | did not observe the anorectic effect of an excess
amount of leucine when the rats were maintained on a normal or high-
protein diet (6). Niijima et al. have reported that the sensitivity of lysine
sensors in the hepato-portal region was 100-fold higher in
lysine-deficient rats than in normal rats (9). The sensitivity of the amino
acids sensors may therefore have increased in the rats maintained on a

low-protein diet.
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Chapter 4

Phosphorylation of 4EBP by oral leucine administration was

suppressed in the skeletal muscle of PGC-1a knockout mice

Introduction

Branched chain amino acids (BCAA) such as valine, leucine, and
isoleucine are essential amino acids and components of proteins which
are known to stimulate protein biosynthesis (15). Among the BCAA,
leucine is known to be a signaling molecule that stimulates protein
biosynthesis in tissues such as the skeletal muscle and liver (16). The
primary regulator of protein biosynthesis is mammalian target of
rapamycin (mTOR), which is an evolutionally conserved serine/threonine
kinase (13). Eukaryotic initiation factor 4E-binding protein (4EBP) is a
suppressor of protein translation and a substrate for mTOR. The
phosphorylation of 4EBP by mTOR prevents the suppressor activity of
4EBP and, thus, increases protein biosynthesis (15). The phosphorylation
status of 4EBP determines its binding to eukaryotic translation initiation
factor 4E (elF4E), a rate-limiting component of the eukaryotic translation
apparatus, and suppressing protein translation; y phosphorylation form,
but not o, p phosphorylation forms, of 4EBP does not bind to elF4E, and
does not inhibit translation (14). Further, it has been reported that the
oral administration of leucine in rodents increases the phosphorylation
of 4EBP (y form) and stimulates protein synthesis (1, 2).

Peroxisome proliferator-activated receptor-y coactivator-1a (PGC-
la) is a co-activator of transcription factors, including nuclear receptors
and is known to increase mitochondrial biogenesis and mitochondria-rich

type-1 fiber formation in skeletal muscle (8, 11). D’Antona et al. reported
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that the administration of BCAA in aged mice caused an increase in PGC-
la levels in their skeletal muscle (6). PGC-1a is reported to associate
with mTOR (5) and may play a role in mTOR-mediated protein
biosynthesis. However, the relationship between BCAA (particularly
leucine), mTOR, and PGC-1a has not yet been investigated. Thus, in this
study, | examined the role of PGC-1a in leucine-activated mTOR (4EBP)

signaling using PGC-1a knockout (PGC-1a KO) mice in skeletal muscle.

Material and Methods
Genetically modified animals

To control the ablation of PGC-1a, I generated a conditional KO
version of the PGC-1a gene using the Cre-loxP recombination system.
Exons 3 to 5 of the PGC-1a gene were flanked by loxP sites in the target
construct (10). Mice with the conditional allele of PGC-1a were crossed
with transgenic mice expressing the Cre recombinase in skeletal muscle
driven by the human a-actin promoter (3). Homozygous PGC-1la lox
allele mice were crossed with heterozygous Cre transgenic mice, and the
offsprings were used for experiments. The genotypes of offspring were
PGC-1a flox/flox with Cre (PGC-1a KO) and PGC-1a flox/flox without
Cre (wildtype, WT). Mice were maintained in a 12-h light/dark cycle at
24°C and were fed a normal chow diet ad libitum (CRF-1; Oriental Yeast,
Tokyo, Japan). Mice were cared for in accordance with the National
Institutes of Health Guide for the Care and Use of Laboratory Animals
and my institutional guidelines. All animal experiments were conducted
with the approval of the Institutional Animal Care and Use Committee of

Kyoto Prefectural University (No. KPU260407).
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Quantitative real-time RT-PCR analysis

Total RNA was prepared using TRIzol (Life Technologies, Carlsbad,
CA, USA). cDNA was synthesized from 500 ng of total RNA using the
ReverTra Ace qPCR RT Master Mix with gDNA Remover (Toyobo, Osaka,
Japan). Gene expression levels were measured with ABI PRISM 7000
using Thunderberd SYBR gPCR Mix (Toyobo, Osaka, Japan) designed to
detect cDNAs. The following primers were used:
PGC-la Fw, 5'- CGGAAATCATATCCAACCAG -3
PGC-1a Rv, 5'- TGAGGACCGCTAGCAAGTTTG -3’ and
36B4 Fw, 5'- GGCCCTGCACTCTCGCTTTC -3/;
36B4 Rv, 5'- TGCCAGGACGCGCTTGT -3".

Measurement of citrate synthase activity

The enzyme activity of citrate synthase was measured by
spectrophotometric analysis. The citrate synthase assay was performed at
412 nm following the reduction of 5, 5'-dithiobis (2-nitrobenzoic acid)

as previously described (12).

Histological analysis

The samples of the tibialis anterior muscle from WT and PGC-1a
KO mice at 12 weeks of age were frozen in liquid nitrogen-cooled
isopentane, and transverse sections were analyzed by enzyme

histochemistry to evaluate succinate dehydrogenase activities (9).

Western blot
After fasting for 24 h, leucine (1.35 mg/g body weight) or vehicle
were administered to the experimental mice. Thirty minutes later, the

samples of skeletal muscle and liver were obtained. Western blot analysis
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was performed as previously described (7). The following primary
antibodies were used: anti-phospho 4EBP (#2855; Cell Signaling
Technology Japan, Tokyo, Japan) and anti-GAPDH (C14C10; Cell
Signaling Technology Japan, Tokyo, Japan). Western blot signals were

calculated using densitometry (LAS 1000; Fuji Film, Tokyo, Japan).

Statistical analysis
Data were evaluated by Student’s t-test or one-way analysis of
variance followed by Tukey’s honestly post-hoc test. P values below 0.05

were considered statistically significant.

Results and Discussion

Fig. 1A shows that PGC-1a mRNA level was markedly decreased
in the skeletal muscle of PGC-1a KO mice compared with that of WT
mice, but not in the liver of WT and PGC-la KO mice. To assess
functionality of the decreased PGC-1a mRNA in PGC-1a KO mice, |
examined mitochondrial marker levels in the skeletal muscle of the PGC-
loa KO mice, as PGC-1a is a regulator of mitochondrial biogenesis. Fig.
1B shows that a decrease in the activity of citrate synthase, a
mitochondrial enzyme of the TCA cycle (4), was observed. The
histological staining of succinate dehydrogenase, another mitochondrial
enzyme of the TCA cycle, also showed decreased signal in the transverse
sections of the skeletal muscle of PGC-1a KO mice (Fig. 1C). Thus, in
the PGC-1a KO mice, mitochondrial activity is decreased, suggesting that

PGC-1a is functionally knocked out in the skeletal muscle.

40



>

Muscle Liver
150 - *

[y

v

o
!

U
o

Relative PGC-1a
mRNA levels
=
[=]
[=]
Relative PGC-1a
mRNA levels
(Y
[=]
o
|

19,
o
T

(=]
o

WT KO WT KO

O N A O ®
T

CS activity umol/g
tisssue/min

WT KO

Fig. 1 PGC-1la mRNA level in skeletal muscle of WT and PGC-10. KO mice and mitochondrial enzyme
activities in skeletal muscle of PGC-1a KO mice

(A) mRNA levels of PGC-1a in the skeletal muscle and liver of WT and PGC-1a KO mice. Relative
mRNA levels are shown. White bar is WT and black bar is PGC-1a KO. Values are expressed as mean *
SE (n=6 for WT, n=7 for KO). *P < 0.05. (B) Citrate synthase activity. White bar is WT and black bar is
PGC-10KO. Values are expressed as mean + SE (n=7 for WT, n=9 for KO). *P < 0.05. (C) Succinate
dehydrogenase staining in WT and PGC-1aKOQ. Scale bar is 200 mm.

I orally administered leucine to WT and PGC-1a KO mice, after
which the phosphorylation of 4EBP in the skeletal muscle and liver was
examined. In WT mice, consistent with the previous reports (1, 2, 16),
the phosphorylation of 4EBP, including the y form, was increased in the
skeletal muscle (Fig. 2A, B). In contrast, phospho-4EBP (y form) level
was markedly reduced in the skeletal muscle of PGC-1a KO mice (Fig.
2A, B). In the liver, leucine administration increased phospho-4EBP level
(y form) both in both WT and PGC-1a KO mice (Fig. 2C, D). Thus, PGC-

lo is involved in leucine-mediated mTOR activation and possibly in
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Fig. 2 Phospho-4EBP levels in the skeletal muscle and liver of mice following leucine administration

(A) Representative Western blot analysis of skeletal muscle. Phospho-4EBP levels are shown. Positions
of the o, B, and y forms of 4EBP are indicated by arrows. Oral leucine or vehicle was administered to WT
and PGC-1a KO mice. Representative blots are shown. (B) Densitometric analysis of the western blot
shown in A. White bar: WT with vehicle, black bar: WT with leucine, white bar with slash: PGC-10 KO
with vehicle, gray bar: PGC-10. KO with leucine. Values are expressed as mean * SE (n=3). *P < 0.05.
(C) Western blot analysis of the liver. (D) Densitometric analysis of the western blot shown in C. Values
are expressed as mean + SE (n=3). *P < 0.05.
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Chapter 5

Enhanced exercise performance through the intake of branched chain

amino acids requires PGC-1a in murine skeletal muscles

Introduction

During endurance exercise, the body consumes energy from many
sources, including carbohydrates, fats, and proteins (7). Proteins are
degraded to amino acids, which are used as energy sources during
exercise. Leucine, isoleucine, and valine are collectively referred to as
branched-chain amino acids (BCAA). BCAA are oxidized in skeletal
muscles and are important energy sources during exercise (1, 7). The first
and second steps of the muscle BCAA degradation pathway are catalyzed
by the branched-chain aminotransferase 2 (BCAT2) and branched-chain
a-keto acid dehydrogenase (BCKDH), respectively (18). BCAT2
catalyzes the reversible transamination of BCAA into branched-chain a-
keto acids (BCKA). BCKDH irreversibly catabolizes BCKAs into CoA
compounds. These catabolites then enter the TCA cycle for energy
production.

Peroxisome proliferator-activated receptor y coactivator la (PGC-
la) is a transcriptional coactivator, whose expression is induced by
exercise in the skeletal muscle (11). PGC-1a plays critical roles in the
regulation of mitochondrial content and function. PGC-1a also induces
the upregulation of fatty acid oxidation and oxidative phosphorylation
(11, 19). Tadaishi et al. have reported that transgenic mice
overexpressing skeletal muscle PGC-1a (PGC-1a Tg) displayed increased
running capacity during a treadmill experiment with a concomitant

increase in mitochondria and fatty acid oxidation (19). Additionally,
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Hatazawa et al. found that PGC-1a Tg mice demonstrated upregulated
BCAT2 and BCKDH expressions in the skeletal muscle (10). BCAA levels
in the skeletal muscle and plasma were decreased in these mice,
suggesting increased BCAA degradation in PGC-1a Tg (9, 10). A recent
study showed that rats with high exercise capacity showed increased
BCAA metabolism compared to those with low exercise capacity (15).
Moreover, in humans and rats, BCAA administration appears to improve
endurance exercise capacity (3-6, 13). However, the mechanisms by
which BCAA improves exercise performance remain unclear.

In this study, | examined whether increased PGC-la-mediated
BCAA degradation is required for enhanced endurance exercise capacity

after BCAA supplementation.

Material and Methods
Animals

Skeletal muscle-specific PGC-1a knockout mice (PGC-la KO)
were generated as previously described (16, 17, 21). PGC-1a KO mice
(males) and age- and sex-matched wild-type (WT) littermate mice were
maintained in a 12-h light/dark cycle at 24°C and fed a normal chow diet
ad libitum (AIN93G; Research Diet, New Jersey, USA). Food intake,
body weight, and voluntary wheel running were measured daily. Mice
were cared for in accordance with the National Institutes of Health Guide
for the Care and Use of Laboratory Animals and my institutional
guidelines. All animal experiments were conducted with the approval of
the Institutional Animal Care and Use Committee of Kyoto Prefectural

University (No. KPU260407).
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Exercise protocol

WT and PGC-1 KO mice were housed individually in cages
equipped with a voluntary running wheel (diameter 200 mm, width 20
mm) for 3 weeks of voluntary training. The mice were administered either
saline or BCAA [0.15-mg/g body weight; LIVACT (46% leucine, 28%
valine, and 23% isoleucine), Ajinomoto, Tokyo, Japan] 30 min before the
exercise tolerance test. The exercise capacity was determined based on a
previously described exercise tolerance test with slight modifications (8).
Mice were subjected to a running test on a treadmill. The mice were then
challenged with a 10% uphill run starting at 10 m/min for 5 min. The
speed was increased by 2 m/min in 2-min increments, up to a maximum
speed of 30 m/min. The exhaustion was indicated by a mouse remaining
on the shocker plate for over 20 sec. Then, all mice were again housed
individually in cages equipped with a voluntary running wheel for 6 days.
Mice were sacrificed after saline or BCAA administration 30 min prior

to the running session at 20 m/min for 25 min.

Quantitative real-time RT-PCR analysis

Total RNA was prepared using Sepasol-RNA | Super G (Nakalai
Tesque, Kyoto, Japan). cDNA was synthesized from 500 ng of total RNA,
using the ReverTra Ace qPCR RT Master Mix with gDNA Remover
(Toyobo, Osaka, Japan). Gene expression levels were measured as
described previously (12). mRNA levels were normalized to those of a
housekeeping gene 36B4 mRNA. The following primers were used:
PGC-1la Fw, 5'-CGGAAATCATATCCAACCAG-3';
PGC-la Rv, 5'-TGAGGACCGCTAGCAAGTTTG-3";
BCAT2 Fw, 5'-CGGACCCTTCATTCGTCAGA-3';
BCAT2 Rv, 5'-CCATAGTTCCCCCCCAACTT-3";
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BCKDH Fw, 5'-CGGCAACGATGTGTTTGCTG-3";
BCKDH Rv, 5'-ATTGACCTCGTCCACCGAAC-3'; and
36B4 Fw, 5'-GGCCCTGCACTCTCGCTTTC-3";

36B4 Rv, 5'-TGCCAGGACGCGCTTGT-3".

Measurement of amino acid levels

Samples of muscle tissue were homogenized in five volumes of ice-
cold 5% sulfosalicylic acid. After centrifugation at 20,400 x g for 10 min
at 4°C, the levels of free amino acids in the supernatant were measured
by high performance liquid chromatography assays (SRL, Tokyo, Japan).
Blood free amino acids analyses were performed with Iliquid

chromatography-mass spectrometry by SRL.

Statistical analysis

Tukey-Kramer tests for multiple comparisons were performed to
determine the significance of differences. Data were expressed as the
mean + standard error (SE). P value of <0.05 was considered statistically

significant.

Results and Discussion

The ability of mice (WT and PGC-1a KO) to tolerate a bout of
exercise might be altered by BCAA administration. To examine this
possibility, mice started to run on a treadmill at 10 m/min and then the
speed was increased by 2 m/min in 2-min increments up to a maximum
speed of 30 m/min. The mice ran until exhaustion, which is defined as
remaining on the shocker plate for more than 20 sec. The exercise
tolerance test showed that the running time in the WT saline-administered

group (WT-Saline) was 21.4 + 2.7 min, while that in the WT BCAA-
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administered group (WT-BCAA) was 35.4 £ 5.1 min, indicating that the
BCAA supplement significantly increased the exercise capacity (Figure
1A). To my knowledge, this is the first report of a BCAA-induced
increase in the exercise capacity in mice. In contrast, the exercise
tolerance test showed that the running times were not increased by BCAA
in PGC-1a KO mice [PGC-1a KO saline-administered group (KO-Saline);
23.6 £ 3.9 min or the PGC-1a KO BCAA-administered group (KO-
BCAA); 18.2 + 1.6 min] (Figure 1A). The trends observed with running

distances were similar to those observed with running time (Figure 1B).
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Fig. 1 Running times and distances for WT and PGC-1a KO mice.

Mice were administered saline or BCAA, and 30 min after, were made to run on a treadmill until exhausted.
(A) running time and (B) running distance. Values are means = SE: n = 6. Labeled values withouta
common letter are statistically different, P < 0.05.

Differences in food intake, voluntary wheel running, and skeletal
muscles mass were not significant between any group (Figure 2A, B and

Table 1). These results indicated that these parameters, among
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experimental groups, do not contribute to the increase in exercise

capacity.
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Fig. 2 Food intake and number of voluntary running wheel revolutions in WT and PGC-1a KO mice.
(A) Food intake was measured daily and normalized by body weight. Values show mean food intake
in 1 day.(B) Number of revolutions was measured daily. Values show the mean number of

revolutions in 1 day. Values are means * SE; n=6.

Table 1. Skeletal muscle mass of WT and PGC-10 KO mice.

BCAA - + - +
Gastrocnemius (g) 0.326 + 0.021 0.301 + 0.006 0.300 + 0.017 0.285+ 0.014
Soleus (g) 0.034 + 0.004 0.032 + 0.006 0.029 + 0.002 0.029 + 0.003
Quadriceps (g) 0.360 + 0.009 0.355+ 0.012 0.372 + 0.005 0.352+ 0.016
Tibialis anterior (g) 0.092 + 0.003 0.090 + 0.003 0.092 + 0.003 0.091 + 0.001

Values are means = SE: n = 6.

Further, | performed real-time reverse transcriptase polymerase

chain reaction (RT-PCR) analysis. Muscle PGC-1oa mRNA levels in PGC-

lo KO mice were less compared with those in WT mice (Figure 3A).

Muscle mRNA levels of the BCAA degradation enzymes, BCAT2 and
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BCKDH, significantly decreased in PGC-1a KO mice compared with
those in WT mice (Figure 3B and C).
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Further, 1 analyzed blood and muscle amino acid levels. Blood
leucine, isoleucine, and valine levels in the KO-BCAA group
significantly increased compared with those in the KO-Saline group
(Figure 4A, B, and C). In contrast, although BCAA administration
possibly enhanced BCAA concentration in the WT-BCAA group, leucine,
isoleucine, and valine levels did not increase compared with those in the
WT-Saline group (Figure 4A, B, and C), suggesting that administered
BCAA was degraded in WT mice but not in PGC-1a KO mice. The trends

observed with muscle BCAA levels were similar to those observed with
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blood BCAA levels (Figure 5A, B, and C). Other amino acid

showed no marked differences between groups (data not shown).
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Fig. 5 BCAA concentrations
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WT and PGC-1a KO mice.
(A) leucine, (B) isoleucine,
and (C) valine. Values are
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different, P < 0.05.
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In WT-BCAA group, | observed an increase in running time
compared with that in WT-Saline group (Figure 1A and B). There are
several reports examining the effects of BCAA on exercise performance
in rats; however, there are both reports that BCAA increased (4, 5) and
not increased (20) exercise capacity. Calders et al., using pre-trained rats
that received BCAA, demonstrated an increase in the running time on a
treadmill (4, 5). In this study, | used pre-trained mice, which were put in
a wheel cage and trained voluntarily for 3 weeks; an increase in the
running time was observed (Figure 1A and B). On the other hand, Verger
et al. reported that rats without pre-training did not demonstrate an
increase in the exercise capacity after BCAA administration (20). In my
results with non-pre-trained mice, | did not observe an increase in the
running time after BCAA administration (data not shown). Thus, BCAA-
induced endurance exercise capacity may require pre-training of rodents.
PGC-1la expression is known to be increased in the skeletal muscle by
continuous exercise training (2, 7, 14). Because increased PGC-la
enhances BCAA degradation enzyme levels (10), it would be expected
that an increase in PGC-1la levels induced by pre-training may be
important for BCAA-induced exercise capacity.

In conclusion, my data suggests that BCAA-induced enhanced
endurance performance requires PGC-1a in murine skeletal muscles, and

PGC-la-mediated BCAA degradation may contribute this process.
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Chapter 6

General discussion and Conclusion

Liver is an important tissue for amino acid metabolism. Asparagine
synthetase (AS) and 3-phosphoglycerate dehydrogenase (PHGDH) are
required for the synthesis of asparagine and serine, respectively, which
are essential for growth. Low-protein diet has been reported to increase
the expression of AS and PHGDH in rat liver. This increased expression
of AS and PHGDH may be an adaptive response to amino acid deficiency.
Furthermore, it has been reported that leucine supplementation lowered
the amino acid deprivation-induced increase in AS expression in vitro.
Therefore, | examined whether excess amount of leucine decreased the
expression of AS and PHGDH in the liver of rats maintained on low-
protein diet. Leucine supplementation in the diet suppressed AS and
PHGDH expression in the liver. | also observed decreased food intake
and growth retardation. On the other hand, oral administration of leucine
by gavage after meal, but not dietary intake of leucine, decreased the
expression of AS and PHGDH without growth retardation and reduction
in food intake. These results suggest that there is no correlation between
growth retardation caused by leucine and the decreased expression of AS
and PHGDH and that growth retardation is, in fact, attributable to
decreased food intake.

The vagal nerve mediates anorexigenic signals from the
gastrointestinal tract to the brain. Therefore, | performed a vagotomy to
examine whether the anorectic effect of excess leucine was mediated by
the vagal nerve. Food intake of normal rats maintained on a diet

supplemented with leucine was reduced, whereas only a slight decrease
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was observed in the food intake of vagotomized rats. This shows that the
anorectic effect of excess leucine is mediated by the vagal nerve and that
that leucine directly or indirectly affects the vagal nerve to suppress food
intake.

Leucine activates mammalian target of rapamycin (mTOR),
serine/threonine protein kinase, and increases the phosphorylation of the
eukaryotic initiation factor 4E-binding protein (4EBP), which acts
downstream of mTOR. These actions promote protein translation. mTOR
is known to form a complex with peroxisome proliferator-activated
receptor-y coactivator-la (PGC-1a). Therefore, I examined the role of
PGC-1a in leucine-activated mTOR (4EBP) signaling using mice with
skeletal muscle-specific knockout of PGC-l1a (PGC-la KO). Leucine
administration resulted in marked increase in the phospho-4EBP level in
the skeletal muscles of wild type mice (WT). In contrast, 4EBP
phosphorylation did not increase in the skeletal muscles of PGC-1a KO
mice following leucine administration. This result suggests that PGC-1a
is involved in leucine-mediated mTOR activation.

Branched-chain amino acids (BCAA), such as leucine, contribute
to energy production in skeletal muscles during exercise. BCAA
supplementation has been reported to improve endurance performance. It
was observed that transgenic mice overexpressing PGC-1a in the skeletal
muscle showed increased running capacity with concomitant upregulation
in the expression of branched-chain aminotransferase 2 (BCAT2) and
branched-chain a-keto acid dehydrogenase (BCKDH) and decrease in
BCAA concentrations in the blood and muscle. The mechanism
underlying the enhancement of endurance performance by BCAA
supplementation is not understood. Therefore, | investigated whether

increased PGC-1la-mediated BCAA degradation is required for enhanced
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endurance exercise capacity after BCAA supplementation. BCAA
significantly increased running time in WT mice. However, BCAA
supplementation did not enhance endurance capacity in PGC-1a KO.
MRNA levels of BCAT2 and BCKDH in the PGC-1a KO mice were
significantly lower than those in WT mice. Blood BCAA concentrations
were higher in PGC-1a KO mice than in WT mice. These data suggest
that PGC-1a is required for the BCAA-induced enhancement of endurance
performance of murine skeletal muscles and that PGC-1a mediated BCAA
degradation may contribute to this process.

The above results indicate that BCAA, including leucine, are
physiologically active substances that regulate biological functions such
as gene expression, food intake, protein translation, and endurance

performance through various mechanisms.
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