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Discrete Potential and its Properties I
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We expand properties about the discrete potential theory. The lattice functions, take the
values only at the lattice points of the N-dimensional Euclidean space RN (N 2>2), defined on the
lattice (set of lattice points) X have analogous behavior for continuous functions under certain
conditions, still more are closely connected with harmonic- and superharmonic-functions, Green’s
functions and potentials etc. In this paper we investigate the representation of a solution of the
Dirichlet problem and properties of Green'’s functions.

Introduction.

The object of this paper is to explore certain properties of the lattice functions, and to
investigate under what conditions well-known properties of the continuous potential theory
are extended to the discrete potential theory. For a discussion of the significance of
various properties of the continuous potential theory see Helms [9]. We shall find that
many but not all the classical theorems remain valid for the discrete potential theory.

We define the corresponding oi)erator L to the Laplacian differential operator 4. This
operator L operates on lattice functions defined on the lattice (set of lattice points) of RN. In
example, a lattice function «(p) at lattice points p=p (x1, x2) in R2 which are restricted to

rational integers is discrete harmonic if it satisfies the difference equation

Lu(p): = {w(p1) +2(p2)+ w(ps)+ u(ps) —4u(p)} =0,

where lattice points p:, 7==1, 2, 3, 4, satisfy the condition:
Euclidean metric dist(p, p:)=1.

Such operators employ the very important role in physical problems and in probability
problems (see Feller [7]).

In this paper we consider the minimum principle and obtain the representation of the
solution of a Dirichlet problem in §2. In §3, for the finite connected lattice X with the non-
void set X9 of all interior points of X the Green’s function is defined. We study some

interesting questions concerning the Green’s function and the Green’s potential.

1. Difinitions and Basic Concepts.

Let X stand for the set of lattice points in the N-dimensional Euclidean space RN (N =2).
The set X, which consists of finite number points on the lattice, is called the discrete compact
space. Let us denote by p, q, --- the points of the coordinate (x1, x2, -+, xx) in RN, The
lattice point of this space has the coordinate (/17, /e7, ---, /n7), where /1, /2, -+, /n—1 and /y take

values 0, 4-1, 4-2, --- and 7 is the given positive constant. Two points p and q in X will be
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called 7-neighbouring points (merely neighbouring points) if

dist (p, q)=7,
where ‘““dist”’ denotes the Euclidean metric in RN. Then the set, denote by U, of »-neighbour-
ing points with respect to a point p in R¥ consists of finite number points, especially 2N
points. In example, let X be the finite compact set in R2? (2-dimensional Euclidean space).
Then any lattice point p=p(x1, x2) has four neighbouring points pi(x1+7, x2), pa(x1—7, x2),
pa(x1, x2+7) and pa(x1, x2—7), and U, is equal to the set {p1, pz, ps, pa} (see Fig. 1).

Let X be a finite and connected lattice of RN, This is a mean that a set M of lattice
points is called “‘connected’’ if any two points of M can be connected by a chain of neighbour-
ing points which belong to the set M, and also called if p1is a neighbour of ps, pzis a neigh-
bour of ps, etc.-- for p1, pe, ps, -+ belonged to M.

A lattice point p in X is called the interior point of X if the set U, of neighbouring points
of p is entirely contained in X. Let us denote the set of interior points of X by X¢, and XN
CX0o by X*, which is the set of so-called boundary points of X. Generally the considering
lattice X consists of such two types of points.

It should be noted that a domain X0 is not uniquely determined as a set of points, unless
some rule is given to distinguish the interior points of the set X (see Inoue [10] and Heilbronn
[8]). A connected lattice X will be called finite if it contains only a finite number of points,
otherwise it will be infinite.

A lattice function #(p) is a numerical function defined only at the lattice points of R¥,
The operator Z is defined on the family of lattice functions by

) Lu(p) = la(p2) - 2(pa) - #(ps) -+ u(pax) —2Nu(p)}

at the lattice points in R¥. It is clear that this operator is linear. The operator Z may be
termed the Zaplacian. For a lattice function ¢(p), let us consider the so-called Poisson’s

equation:
(2) Lu=—¢.
If ¢ vanishes, this becomes Laplace’s equation:
® Lu(p)=0.

A lattice function  is said to be a dzscrete harmonic function in the lattice X if it is defined
for all points of X and if the equation (3) is held for all interior points p of X.
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Now let X be assumed to be a connected lattice with more interior points than one. We
define the following discrete probability measure u, for each point p in X0, which is carried

on the set U, of neighbouring points of p,
1 k
(4) pp 1= _}:1 €p; for p;eU,,
§i=

where “2”’ denotes the number of all points belonged to Uy, here 24=2N in R¥,
Thus a lattice function # defined on X is discrete harmonic at an interior point p if and
only if its value at p is equal to the integral mean with respect to the discrete probability

measure u,, (4), carried on the neighbouring point set U, of p,

(5) u(p):/u dpy for pe Xo.
Moreover, if the lattice function s defined on X satisfies the condition:
(6) s(p)= / sdu, for pEX®

with respect to a discrete probability measure u, carried on the neighbouring set Uy, s is said
to be a discrete superharmonic function. This definition is equivalent to the property:

@) Ls(p)=0 for peXo

with respect to the operator L.

2. Dirichlet problem and Poisson formula.

Let X be a finite compact lattice in R¥ with the non-void interior point set X°. We have
the minimum principle for a discrete superharmonic function on X.

Theorem 1. LZLet s(p) be a lattice function defined on X which is discrete superharmonic
on a finite domain XO such that s >—o on X. Then s is either the constant on X or it
attains the minimum value of s on the boundary points of X.

Proof. Let us set the constant

m:=inf s(p).
peX

Now we assume that there exists a point po belonged to X0 such that s(po)=». Then from
the definition of a discrete superharmonic function we may have the neighbouring set Uy, of
po in X° such that

sz [ s dus,

where the measure u,, denotes the discrete probability measure carried on the Uy, that is

1 2N
Heo= 5N 2\ ep;

i=1

for piEUpa, Z':l, 2’ AR 2N'
Thus
1
m=sP)Z/ 5 dup=yr (5P +5(P2)+ -+ 5(pex)}
and for each p;€U,,, 7=1, 2, -+, 2N,
s(pi) 2.
(3)
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Therefore since
s(p1)+s(p2)+ -+ +s(p2n) =2Nz,
we get
s(po)=3(p1)=s(p2)=+--=s(pan) =.

By the induction the function s is constant at all points of X as the set X° consists of the finite
numbers of points. Hence the function s is the constant for all p& X, which completes the proof.

Theorem 2. Let f be a given real-valued lattice function on the boundary X* of a finite
compact set X. Then there exists one and only one discrete harmonic function u(p) which
takes the values f(p) on the boundary X* of X.

If K(p) 7s a real-valued lattice function defined on X which also takes the values f(p) on
the boundary X* of X, then

2 up) —u@l=_ 2 e —Ha)?

p, p,
and the sign of equality holds only if u(p)=+4A(p) for all pEX.
See Heilbronn [8] for the proof.
Let us define the following function: K(q, p) is defined as a lattice function on the
product space X* X X with the properties;
(i) for each q&X*
K(q, p) is discrete harmonic in X0,
(i) for each qEX*
K(q, p) vanishes on all boundary points of X* except at the point p=q
and
(i) K(p, p=1.
The function K(q, p) is non-negative on X* x X.
Lemma 3. Lez X be the finite connected lattice with some interior points of X. For a
lattice function f defined on the boundary X* of X suck that
/=0 on X*\ {q}
and
S=1 at q,
there is a unique function X(p, q) with the properties (i), (ii) and (iii) on X.
Moreover if u(p) ¢s a discrete harmonic function on X, and if p is any point of X, the

Junction u has the representation

u(p)=q§*K(q, p) #(q).

The proof of this lemma is clear since ;the Dirichlet problem has a unique solution by
the proceeding theorem.

Thus we get the representation of the Pozsson-formula type for the solution of the Dirichlet
problem.

Theorem 4. LZet X be a finite connected lattice with, non-void, X°, and [ be a real-
valued lattice function on the boundary X* of X. Then there exists only ome discrete

harmonic function u on X, this is
Lu(p)=0 Jor all pEXO,
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such that
® u(p)= 3%, K(q, p) f@),
where K(q, p) is defined on X* X X, which has properties (i), (i) and (iii).
3. Green’s function and Green’s potential.

Let X be a finite connected lattice in RN with the non-void set X° consisted of all interior
points of X.

The lattice function G(q, p) is defined on X0x X, if exists, by for each q& X9, a lattice
function G(q, p) on X satisfies followings:

® G(q, p)=0 at pE X¥,

(i1) LG(q, p)=0 at p& X0 such that p=xq,

(i)  ZG(q, p)+1/72=0 at p& X° such that p=q,
and

) Glq, p)zo0.

This function G(q, p) is called a (dZscrete) Green’s function with the pole q on X°x X.
It is clear that the Green’s function G(g, p) is discrete superharmonic in X9 for each q&Xo.
By theorem 2, if X has more interior points than one, the Green’s funtion exists uniquely for X.

Theorem 5. 7'%e Green’s function G(q, p) defined for the finite connected lattice X is
unique if it exists.

Proof. Let Gi(q, p) be another Green’s function for X. For each point g€ X°, Gi(q, p)
is a discrete harmonic function in X9, Therefore for each q& X°, G(q, p)—Gi(q, p) is a dis-
crete harmonic function in X°. By theorem 1, we have G(q, p)=Gi(q, p). This completes
the proof of the theorem.

Theorem 6. /f Xi and X2, X1C Xa, are finite connected lattices of RN having Green's
Sunctions Gx, and Gx,, respectively, then

Gx,(q, P)=Gx,(q, P) on X19% X;.
Proof. For each q€ X9,
Case 1, at p& Xy1* N Xo*
Gx,(q, p)=0 and Gx.(q, p)=0,
Case 2, at pe X1*N X0,
Gx,(q, p)=0 and  ZGx,(q, p)=0
and Case 3 at p€ X,° and pxq
LGx,(q, p)=0 and  ZGx,(q, p)=0
and at p& X1° and p=q

LGx(q, P=—-% and  ZGx(q, p)=——§2—-,
Thus for each g€ X0
L(Gx,(q, p)—Gx.(q, P))=0 in X,
and by theorem 1, Case 1 and Case 2
Gx,(q, P)ZGx4i(q, P) on X1°x Xi.
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This completes the proof of the theorem.
We consider the dzscrete measure on the finite connected lattice E which consists of #

numbers of points. This is, let u be a measure defined on E, which carried on #z points in
E such that

(9) p= .;1 Migpi,

where 2 is the malBl of p at p; for /=1, 2, ---, n. The set of the points p; with 72;>0 is the
support, denote by .Su, of u. If the support .Su of u is only one point p and if the total maf3
of w is 1, the measure p is a Dirac measure &,,.

Definition. Let X be a finite connected lattice with the non-void set X° which consists
of z interior points. If uis a discrete measure such that satisfies the equation (9) and is carried

by the interior point set X9, then

(10) Gu(p) = 22 Glay, P,

if defined everywhere on X0, is called the (dzscrete) Green’s potential of u. Especially
Geq(p)=G(q, D),

which denotes the discrete potential of a point charge concentrated at the point q.

Lemma 7. If p is a discrete measure on the finite connected lattice X having a Green's
Sunction G, then Gu is discrete superharmonic on XO.
We can extend the some properties, whose are well-known subjects for the continuous

potential, to the discrete potential.

Theorem 8. [/f uand v are discrete measures on the fintte connected lattice X, supporied
by XO, for which Green’s potentials Gu and Gv are defined, and if Gu(p)=Gu(p) on XO, then
p=v on X.

Proof. Let us set discrete measures pu and v such that

n n
n= X mieq; and v= 2 m2;eq;,
Jj=1 i=1
respectively, where X° consists of # interior points. Then two potentials are given in follo-
wing:

Gu(p) = g{oG(qh P71
J

and
Gv(p)= X G(qi, p)mzi.
;X0

From the hypothesis of the theorem
qEXOG(qf', Pymij = 2 G(ai, p)mai,
this is,
G(q1, p)m11+G(qz, p)miz+--+G(qn, P)71s

= G(q19 P)m21+G(q2, P)m22++G(Qn, p)mzﬂ-
Therefore

(6)
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G(qu, p) (m11—m21)+G(qe, p)(me12—maz)-+ -
-+ G(qn, p) (721n—m224)=0.
If P=qxu,

1
LG(q1, Ple=ai=—

72 and LG(qla p)lp=Q1:O for /=2, n.
Thus we get mi11=m21, and likewise if p=q; for /=2, 3, -+, n, mu=msz for /=2, .-+, n,
respectively. We have u=v ,which completes the proof.

Lemma 9. 7f p is a discrete measure on the finite connected lattice X whick carried by
X0 and if X have a Green’s function G, such that W(X) <-+oo and wW(Y)=0 for some sub-
of XO containing Y.

lattice Y of X, then the Green's potential Gu(p) is discrete superharmonic on the component

Lemma 10. 7f, under conditions of lemma 9, the Green’s potential Gu(p) of the discrete
measure p on X carried by XO is discrete harmonic in X0, then p is the zero measure.
Proof.

Since the Gu(p) is discrete harmonic in X0, it is
LGu(p)=0 at pe Xo.
From the definition of the Green’s potential, for the discrete measure
m= 2 mi Epi, for p"EXOa
1=1
(11) LGu(p)=L( L Glas, pms)

mi"LG(qi, p).
Then if p=q; for 7=1, 2, ---, #, we get m;=0 for 7=1, 2, -+, n

-
1
[

0, this is, p is the zero measure.

=M=

. Thus mi=ms=
This completes the proof of the theorem.
We obtain the following theorem from above lemmas.
Theorem 11.

If Gulp) is the discrete potential of a measure u defined on X which is
of p-measure zero.
Proof.

carried by XO having a Green’s function G, then Gu s discrete harmonic on any sub-laltice
Now let Y be the sub-lattice of X, which is p-measure zero.

The discrete
p= 2\ i &q;.

measure u defined on X with the support Su on X° is prescribed in the following:
q;EX0
Therefore the Green’s potential is

Gu(p)= > G(qi, p)mi
q;€X°
= 3 G(qi, p)mei.
q;EX0\Y
‘We have
(12)

LGup)=L( %, G(g; p)mi)

= X miLG(g, p).
q;EX0\Y
Since for pe€Y
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LG(q:, p)=0 for each q:E Xo\Y,

by (12)
(13) LGu(p)=0 for all pEY.

We get the discrete harmonicity of Gu on Y. This completes the prroof.
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