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In this paper we establish the existence of an ideal boundary 4** for X such that the
points of 4** correspond to non-negative harmonic functions, 4** supports the maximal
representing measures for positive bounded (and quasibounded) harmonic functions, and
almost all points of 4** are regular for the Dirichlet problem.

1. Introduction.

Let DS R*, n=2, be a Lipschitz domain with a point x in D fixed. Hunt and
Wheeden (5] have proved that corresponding to each positive harmonic function £ in D,
there is a unique Borel measure pg on ¢D, such that when yeD,

ho) =§, K3, 2dp(2),
where K(y, 2) is the kernel function defined by
dw?
K(y, 2 =7 (2)

in the Radon-Nikodym sense and w?(E) is the harmonic measure of ESdD at y, and
investigated the properties of K(y, 2) in DXadD and its applications. Recently Armstrong
(13 and Loeb (8] developed these analogous theories in the Brelot harmonic space. We
are going to show that same results are satisfied in the Bauer harmonic space as the
natural extension. For the original work on this topic in the Brelot axiomatic setting see
Loeb {8].

In this paper we shall construct the kernel function under the some compactification
of the harmonic space in Bauer’s axioms, and investigate the regularity of the minimal
boundary points as its applications.

We are indebted to Professor P. A. Loeb for drawing our attention to this problem
and his useful suggestions.

2. Definitions and Preliminaries.

Let X be a locally compact Hausdorff space with a countable base and suppose that
X is a harmonic space relative to a sheaf 5y of real valued continuous functions which
satisfies the Bauer’s four axioms and has the following assumption: The constant 1 is
superharmonic. We assume that X is connected and for each point x of X there exists a
potential p strictly positive at x.

Let X* be a regular compactification of X such that each bounded harmonic function

(1)



A2 T. MURAZAWA

hes#x and each bounded continuous potential p= P, on X have continuous extensions to
X*, the set of these extensions separates the points of X*—X. Moreover we suppose the
existence of a positive measure v, defined on X, whose support Sv is contained in the closures
of Xin X*. Our choice here of X* is the smallest compactification with the desired results.

We set 4*=X*—X which is called the ideal boundary of X. Let I'* be the harmonic
part of X*—X, i. e., the set of points at which all positive potentials on X have lim inf 0.
Evidently it is a compact subset of 4*.

The mapping h—>h|I'* is an isometric isomorphism from the Banach space ¢ of
bounded harmonic functions on X with the sup. norm onto the space C(I'*) of continuous
real-valued functions on I'* with the sup. norm (see Loeb and walsh ([9]). All positive
harmonic functions on X have continuous, extended real-valued extensions to X*. Of cause,
if f&C(I'*), then f is the restriction to I'* of a unique harmonic function h &% which
is represented by the harmonic measure p¥ with respect to x&X on 4*=X*-X:

he(o) =§_ fdps.
Also we have I'*D U Spu* (see Meghea (10]).

z€X
Now we define a positive measure on 4* by

o* (o) =§ pr(@dv(x),

where ¢ is any Borel set in 4*. Then, for each point x&X, p* is absolutely continuous
%k
with respect to ¢*, and thus its Radon-Nikodym derivative %‘ffr with respect to ¢* exists
o

and is non-negative. It is essentially bounded (¢*) in 4* for each fixed x&X. Thus we

have

§ (42)@dor o =1,

since the constant function 1 is superharmonic in X with boundary value 1.
Moreover we denote by L.(¢*) the class of essentially bounded functions defined on
I'*, which L.(¢*) contains a unique continuous derivative representative. Therefore,

for each x=X there is an k,&5¢x such that 1&3—=kzlf*, the restriction of £,( ) on I'*,
g

d
For each pair x, yeX, let

* %*
ke, ) =k () =§ A2 Ll o,

Clearly it is symmetric, i. €.,
k(xa }’) =k()1, X) .

Let ¢ denote the unique continuous mapping of X* onto the unique quotient X** of
X* such that for each x&X, ¢(x) =x, and k(x, - ) has a continuous extension to X** and
the set {k(x,+)|x=X} of extensions separates the points of J**=X**—X. For each x& X,
let K(x, z) denote the extension of k(x,+) to z&X**. Since % is symmetric, we may

assume that
K(x, 2) =K(z, x)
for each x&X and 2z X**. Indeed, if x&X, z&€X** and 2’€X* with ¢(2’) =z, then
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K(x, 2) =k(x, 2%) =1ig§ k(x, 2 =lim k(y, x) =k(2', ) =K(z, ).

y—a’ y—z’

Given x€ X, let y** be a harmonic measure on 4** with respect to x and X**. Then
its supports Sut* is on the harmonic part I'** of 4**, that is:

Lemma. If E is a Borel subset of 4**,
pEt(E) =pz (g7 (E) N 4%).
Now we define another positive measure on 4**:
o**(E) =a*(¢~H(E) N4*)

for any Borel subset E of 4**.  Thus we have the following relations that for each fe
C(4*%)

S,**f(z)K(x, 2 da**(2)
=Sd*f(¢(y))K(x, P(»))da*( )
=§ GOk, pda*(p)
=§ @O
=§ S (Ddpr* (D).

That is, since f is an arbitrary function of C(4**), we can obtain the following.

Proposition 1. The function K(x, 2) on XXX** represents the Radon-Nikodem derivative
of p** with respect to o**, and for x&X K(x, -) ts essentially bounded with respect to the
positive measure g**.

Moreover we get the properties of the kernel K(x, y);

Proposition 2. The function K(x, ) on XX X** has the following properties:
() of x€X, K(x, +) is continuous on X**, harmonic on X and K(x, -) >0,
(2) if z&d4**, K( -, 2) is harmonic on X.

3. A representation theorem and the regularity of minimal boundary points.

We shall consider the regularity of minimal boundary points of the compactification
X** of the harmonic space X.

Now we recall the definition of a minimal harmonic function in X, that is, a positive
harmonic function 4(x) in X satisfying the minimal property: if u(x) is any harmonic
function in X such that 0<Zu( - ) <<h( -) in X, then there is a constant C=0 such that u=
C - h. A point z&4** is called minimal if K(z, -) is minimal in X.

Then we have the following.

Theorem 1. Fix z& 4** and assume the existence of a point x, in X such that K(z, xo) =1.
Then, if the point z is a minimal point, z is a regular point.

Proof. Let {x,} be an arbitrary sequence converging to z in X and g be a weak*
cluster point of the sequence of harmonic measures p¥* with respect to x, on 4**. Then

there exists a subsequence {x,} of {x,} such that for each x&X
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§, ekt Ddp® =lim § Kt 0 dpz3,
=1ir’n K(x,, x)
=K(Z, .X').
Thus, also by the hypothesis, we have
S,**dﬂ:K(’:’ xo) = 1.

Then p is a positive measure with the total mass ||u||<1 on the set of positive harmonic

functions {K(t, -){te¢(I'*)}, and p represents the minimal harmonic function K(z, -).

Thus we can conclude x({z})=1. If §, denote a Dirac measure at z, we have p,=d,.

Therefore z is regular. Q.E.D.
Also we can easily obtain the results as the corollary of the above theorem.

Corollary. The function K(z, ) attains its minimal at a regular point of A**.
This was suggested by a result of Ikegami (6].

Remark. In above Theorem 1 as the example of that K(z, x,) =1 we can consider
the case if v is a point mass at x, in X and if 1€4#, or if z&¢('*).

z

Theorem 2. Let v, be a positive measure on A4** such that

v (E) = S hda*

g~ kEHnr*

for each hes#% positive and each Borel set EC**.
If h is bounded, then v, is a (unique) Borel measure on the minimal point z of ¢(I'*) such
that for each xX

h) = L Kz 0dn(2).
#(r*
Proof. For each x&X, by the harmonic measure p* with respect to x&X and X*,
hx) =§ hG)dpz()
=Sr*h(y)k(y, x)do*(v)
=Sl**K(z, X)dv,(2).
Thus v, rpresents A. Moreover, since for two arbitrary positive function h,, h,e#%
ahy () + (A=) hp(x) =) K(z, )d(av, + (1=a)v;) (2)
as for an arbitrary positive real number a, 0<<a<1, and he#k
ah(x) =\ Kz, X)dav,(2),
4

that is, the mapping h~—>v, is affine, we can conclude that the positive measure v, is
maximal on 3% with respect to the Choquet ordering relation (see Fuchssteiner(4])) and is,

therefore, supported by the minimal point of ¢(I™).
Q.E.D.
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Remark. From the proof of this theorem we can have that the measure v, is the
maximal representing measure for i on 4**,

Corollary. If h is a bounded harmonic function of #x and v, is the maximal representing
measure for h on A** which is defined in the above theorem, then v, is absolutely continuous with
respect to o** and at the point x in X

ho) =§ L KOw D (2 () )do** ().

dﬂ'**

Proof. Let E, be a Borel set in 4** with ¢**(E,) =0. Then by the above theorem,
since A is the bounded harmonic function and since

S de*=\ do**=0,
r*ng=lEy E,
we obtain
= * =
v (Ey) Srw_lwo)h(z) do*=0.

Q. E. D.
Finally we shall consider the problem “The set of irregular points of the boundary 4**
of the compactification X ** has zero harmonic measure”. Let us prove this problem in the

following form.

Theorem 3. Almost all points of A** with respect to harmonic measure are minimal points
in I'** and are therefore regular.
Proof. If E is a Borel set in ['**, it follows that

o**(E) =a* (§™(E) NT*).

Let h(1) denote the greatest harmonic minorant of 1. Since 1—h(l) is a potential
and I'* is the harmonic part of 4*=X*—-X, we get

l=h(l) on I'*
Therefore
e (B) =§ |, h(Dde* ()

= *
Sr*n«p‘l(E)dU ()

=S do**(x)
E

=g**(E)

for each Borel set E of I'**. That is, we obtain
vy =0**
Now we set ¢=sup h(l) (x). Then ¢**=y,4,=cv,-1,, is supported by the minimai point
zEX
of I'**. Since the harmonic measure p** with respect to each point x&X is absolutely
continuous with respect to ¢**, the measure p** is supported by the minimal point of I'**,

Therefore almost all points of 4** with respect to harmonic measure are minimal points
in I'** and thus are regular. Q. E. D.

Remark. In this paper we discuss the theory for the bounded harmonic function,

(5)



A6

T. MURAZAWA

but we can easily extend the results developed here to one for the quasibounded harmonic

function, because an unbounded positive harmonic function 2 on X is quasibounded if it

is the limit of an increasing sequence {h,} of positive bounded harmonic functions.
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Analogous results in the Brelot harmonic spaces may be found in (8] for Theorem 3.
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