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Note on the Weber-Voetter method
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In connection with the Weber-Voetter method for expanding the cigenpolynomial of a square
matrix. A.S. IHouscholder has stated the following important fact without detailed proof in
his remarkable work [2]: the method leads to the minimal polynomial for the vector e; with
respect to a given matrix.® In this note we shall carry out the proof according to the idea of

Householder.

1. Introduction.

Let 4 be an 7 X # matrix and let A be a variable. Then the purpose of the method of Weber-
Voetter is, in short, to construct two particular 7 X 7 matrices #(A) and Q(A) which satisfy
(A=Y ) —Q), (L.1)
where 7 is identity and the elements of matrices #'(A) and Q(}A) are polynomials of A. In partic-
ular, matrix Q(A) is of the form which can be expressed as follows:

—A) =) =) =0
w21 0 0 s 0

QM= wsn w32 0 0 (1.2)
w‘nl W2 w;13 """ Wi, n—1 0

where elements w,; (j=1,2,...,2—1; 7>7) are constants and the (1, 7) element —/f;(}) is a polyv-
nomial of degree 7 in A (cf. [1], [2], [3]).

Hence if the reduction (1.1) is possible, it is easy to show that the determinant of the matrix
W(A) is a constant, and that /() is identical with the eigenpolynomial of 4 apart from a constant
factor.

Taking the form of Q(A) into account, the first column of the original matrix 4 —A/Z can be
used as that of Q(A). Hence for the purpose of carrying through the reduction (1.1), it will very
probably be best if the columns in Q(A) are determined in turn one after another beginning with
the second. Accordingly, it will be enough if the matrix /#(A) can be formed as a product of
matrices M;(A) (7=2,3,...,n) as follows:

WA) =M 2(N) M 5(A)- - M (M),
where M (N)y=(e1,..., e;—1, M; A1, €;s1,...,€2);
*) VThe author could not see the following original papers:
M. Paul, Zur Kenntnis des \Weber-Verfahrens, Tech. Hochsch. Miinchen, Diplom-Arbeit, 1957.

R. Weber, Sur les méthodes de calcul employées pour la recherche des valeurs et vecteurs propres d’une
matrice, Rech. Aéro. 1949, No. 10, 57-60.
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A2 K. INOUE

here ¢, is the 7 th column of the identity 7 of order » and =, is an adequate vector of dimension 7.
Clearly M;(}) differs from the identity only in the 7 th column. Introducing now the following
intermediate matrices 2;(A), the reduction (1.1) can be written as

Pi(N)=A—\,

Pira)=P,NM; 1) (=1,2,...,n—1), P,AN)=Q). (1.3)
Evidently, in general, such reduction can not be carried through to completion. In connection
with this point, we have a general knowledge as follows: in the reduction (1.3), assuming it has
been possible to construct 2,,(A) (72<nz), then the next step can be straight carried out provided

€m+1TPm(/\)€m?':0. (14)

Of course, by our assumption, e3? P,,(A)e1es” P,(A)ez -+ em’ Pm(N)em—1 is non-vanishing.  More-
over, even if the condition (1.4) does not hold, in the case when there is at least one non-null
element ;7 P,,(A)e,,—=wim#*0 (A=m-+2), P, () can be similarly and effectively transformed by an
elementary permutational transformation in order to bring the element wg, to the pivotal
position (-1, m). And then, for this transformed matrix, our reduction can be carried
out as before. On the contrary, in the unfortunate case when the elements ¢,72,(Ne,, (=
m—1,...,n; m<n) all vanish, clearly the effective (non-trivial) reduction finishes at this stage.
For such a case, A.S. Householder has stated the following important fact without detailed
proof in his remarkable work [2]: the (1, »2) element of 7,(A) (7<) is the minimal polynomial
for e; with respect to the original matrix 4.* In this note we shall carry out the proof
according to the idea of Householder.

Certain notational conventions will be kept throughout this note, and these will be listed here.
Except for dimensions, indices and functions, lower case Latin letters represent column vectors,

lower case Greek letters scalars and capital Latin letters matrices. The superscript T will be

used for denoting the transposed vectors and matrices. For a matrix 4, 4 ( 2’ -é’ """ \is the minor
)

...... 7

determinant whose elements are taken from rows 7, 7,... of 4 and from columns 2, /,... of 4,
respectively. And also ¢; is the 7 th column of the identity 7 of order #.
Acknowledgement. The author heartily thanks Professor K. Okugawa for his encourage-

ment and valuable advices.

2. Preliminaries.

We make a start with a simple lemma of factorization as follows:
LEMMA 1. ZLet 4 be an nXm matrix and let m=<n. Suppose that every leading principal

minor determinant of A(%’g’ """ ,m:l) is non-vanishing.  Then A can be expressed in the

Sform A=LR, (2.1)
where L is an nXm lower trapezoidal matrix and R s an mXwm wunil wupper triangular
matrix; and, when that is so, such a factorization is unique.

ProoF. From our hypothesis, evidently the first »—1 column vectors of 4 are linearly
independent. Now, in the case when the » column vectors of 4 are linearly independent,

certainly there exists at least one non-null determinant among A4 L2 m—1,2 ) (t=m,
1,2,...... ym—1,m

*) See the preceding footnote.
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Note on the Weber-Voetter method A3

m—+1,...... ,#). In this case, without loss of generality, we can assume that AG’%’ """ ’m) #0.
When that is so, it suffices to examine the factorization as follows:

A=L"DR, where L'=(A;;) is an » X » unit lower trapezoidal matrix and D==diag (81, d,
...... , 8,,) 18 an m X m diagonal matrix, and where R=(p,,) is an » X » unit upper triangular
matrix. [t is easily seen from the direct calculations that the problem of the factorization A4

=/L'DR is equivalent to that of solving the following simultaneous system of #m equations in

nm variables A;;, 8; and p;;: A( } ):81,

1,2,...... WA 1.2,......,A—1
A<1,2, ...... =415 i1)e (#=2,3,.......m),
1,2, o1, 1,2, R .
‘4(\1:2: ...... ,k—l;j>:A<1,2, ...... ,é)pkj (#=1.2,..... e A ),
1,2,...... k—1,7 /1,2,...... v S
and A(1:2: ...... :le~l;zk) :AKI,Z, ..... ,k,)/\"k (f=1,2,...... oy i=k+1, A4+2,...... 7).

Therefore, it is evident from our hypothesis that there exists a unique solution of the above equa-
tions, which implies that the factorization (2.1) is possible and unique.

On the contrary, in the case when the » column vectors of 4 are linearly dependent, all the

determinants A( ) ({=m,m+1, .. ... ,7) vanish. Then it follows instantly from

the above equations that §8,,=0 and the elements A;,, (=m-+1,m-2,....n) are all free, and
also that the others is uniquely determined. However, even in this case, the »z th column of
L="7"D vanishes uniquely. Consequently, we see that the pending factorization (2.1) is possible

and is uniquely determined. This completes the proof of lemma 1.

Let 4 be an 2 X » matrix and let e1,7,...... oy eveen be the Krylov sequence of the initial vector
e1 with respect to 4, where v, 11=4%¢1 (=1,2,...... ). For any positive integer 7, put FV,;=(e,
V2,...... ,v;). Clearly V; is an z X7 rectangular matrix, the columns of which are formed from the

first 7 consecutive vectors in the Krylov sequence described above. Then there is an important
lemma which will often be used later.

LevMA 2. Let A be an nXn matrix. For any one positive integer m (m=<n), let R, be an
mXm wunit upper triangular matrix and let Q,,o=(w;;) be an nXm matrix suckh that w;;=0
(7=2,3,...... o i < j<m) and the others are constants. Consider now the following equation in

R, and Q,,0, whose elements are unknown scalars:

AV R,=0,o. (2.2)

Then, (1) if every leading principal minor determinant of V,,,G’g’ | 78 nmon-van-

ishing, there extsts a unique solution of the equation (2.2);

(2) and, when that is so, the following determinantal relations hold:

o=l

1,2, N (L2 23, it
Vm+1<1,2, ...... ,z)*’m(l,z, ...... ,z>_Q’"’°<l,2, ...... ,f—l)

=wWoiw3zp e w170 (r=2,3,...... ), (2.3)
g 1,2,...... ,m—f—l)_ <2,3, ...... ,m+1>_~ ______
and l”‘“(l:Z: ...... 1, =m0 1,2,...... gn ) wnes? Wit ().
Proor. Let P be an # X » permutational transformation matrix such that P=(e,en, ...... ,
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A4 K. INOUE

¢,—1). Then we get
PAV ,R,,=PQ,, 0. (2.4)

Put L=2Q,,,0, where L is an n X m lower trapezoidal matrix. Then we see that the problem of
lemma 2 is equivalent to that of the factorization of the 7 X » matrix 24 V,, as follows:
PAV,=LR,~ 1, where R, ~11s an » X » unit upper triangular matrix.
Since this factorization is no other than that of lemma 1, we have only to inquire into the
conditions in lemma 1 for the matrix PA4V,,.

Clearly PAV,,=P(v2,vs,...... ;Um+1). Hence, the following determinantal relations hold:

for each positive integer 7z (#=1,2,...... ;m—1),
1,2\ 1 (L,2,...... ,z+1)
r4 Vm<1727 ----- )f>_u Vm<1:2, ...... ,f+1 '

Applying now the lemma 1 to the matrix A V,,, we see that the first part (1) in lemma 2 holds;
when that is so, seeing that &,, is a unit upper triangular matrix of order #z, it is easily seen from
the relation (2.4) that the determinantal relations (2.3) hold.

3. Householder’s main theorems.*

Let M;(A)=(ey,...... 281, Ae; 1,41, ... s€n) (6=2,3,...... ,#), where m,; is a vector of
dimension ~. Then for any positive integer 7 (2<m =<#), the product Ms(X)Ms(X)------ M, (N
can be expressed as

(3.1)
W W) =er(LAXR, ... A=) b Wy AW abeeeee A2,
where each W; is an » X matrix whose elements are constants and the first 7 columns of 7,

vanish. And then the principal part of the m-stage of reductions (1.1) and (1.3) can be written

as follows:
(A=W D) =Q(N), (3.2)
here Q,,(A) is an z X 7 matrix and has the form as
(=AQ) =) —faQ) e —f )
L wa 0 0 0 J
{ w31 w32 0 0
QM= | e i (3.3)
Wom1 W2 W3~ W 1 0 ‘
: wmfl,] wm-?—l,2 wm-il—l,S """""" Wint1,m—1 Womt1,m |
L wa Wy Wyg Wy m—1 Wn,m v

where w;; is constant and f;(}) is a polynomial of degree 7 in A. In this circumstances, we have

THEOREM 1. Let 4 be an n X n matrix. For any one positive integer m (m <n), suppose that

every leading principal minor determinant of V,,,( i’g’ """ ’Z) s non-vanishing. Then the

Weber-Voetter reduction (3.2) is possible and two matrices W,(\) and Q,,(\) in (3.2) are uniquely

determined by the m--1 consecutive Krylov vectors e1,vs,...... SUmt1-

*) See the reference [2].
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Note on the Weber-Voetter method Ab

ProoF. In the Weber-Voetter reduction (3.2), W#,(\) can be represented in the form of
(3.1) and also Q,,(A) in the form as follows:
QrN)=Qo+AQ1+ - +A"Q,, (3.4)
where Qo=0,,(0) and Q; (/=1,2,...... ,m) are z X m matrices such that all the rows of each Q;
except the first vanish. Then it follows from the direct calculations that
(A—=2W,,(AN)=A(ere,*T +W1)+A{A(ere2*T 4 W) —(ere1*T + W)}
+A2 {4 (e1es*T -+ W) —(ere™T W)} oo
+Am=2{d(erm1*T + Wo-1) —(e16m—2* T+ Won-2)}
A7 U dere, T —(e16m-1* T+ W,p1)} —A7e16,,*T,

(3.5)

where e;* is the 7 th column of the identity matrix of order ». Accordingly, from the relation
(3.2), we get immediately the simultaneous system of linear equations in the elements of W; (7=1,2,
...... ;m—1)and Q; (7=0,1,2,......,m) as follows:

Qo=A(erer*T+Wh),

Qi=A(erer 1™+ W) —(ere,* " +Wy)  (¢=12,...... m—2), (3.6)

Qm—]:Aelem*r_(elem—1*T+Wm—1); Qm:_elem*T'

and Q,,(A) and is uniquely determined by the vectors e1,vs,...... JUmt1-

From (3.6), it follows at once that Qee1*=v2,Q1e1*=—e1, Qe1* =0 (7=2,3,...... ym)and Wer*
=0 (¢=1,2,...... ,m—1). We see hence that the first column of each Q; and W is uniquely
determined by the vectors ¢; and 2. Suppose here that for each 7 (#/=1,2,...... LBy 1< A<m),
the 7 th column of each W; and Q; was uniquely determined by using the vectors e1,v2,...... SULH1-
Then it follows directly from (3.6) that

Qo ert1* =AW, er1*,
Q: i1 =AW 1 epi* =Wy er et (=1,2,...... A—1),
Qr err1*=Aer— Wy eri1*, Qrr1€e11™=—e1,
Qt €k+1*:O (f:/é+2,k+3, ...... ,M).
Because of ¢,7Q;=0 (¢r=1,2,...,m; 1==2,3,...... ,7), put Qepsr*=—E€ri1’er (1=1,2,...,k). Then
it follows from (3.7) that
Wi epi1* =AW, p1ep1* -+l 1 (7=1,2,...... SA—1),
Wk €k+1*:A€1+§k+1k €1, Wt €k+1*:O (z‘:k—l—l,k—{-Z, ...... ,m—l)
So that, the first expression of (3.7) and the above relations (3.8) lead to
Qo ert1*=Eri1! v2+Ep12 V3o +-Eri1® Ukt 1+ Tk (3.9

From the form of Qy, ¢,7Qoer+1*=0 (7=2,3,...... ,£-+1). Hence, we get the following equations
in épt (=1,2,...... R):

(3.7)

(3.9

k
t;l EriiteTvim e Top=0 (7=2,3,...... R+1). (3.10)

By our assumptions, the determinant of the coefficients in (3.10) is different from zero. Hence

there exists a solution which is uniquely determined by the vectors e3,vs,...... ,ur+2. Consequently,

C5)



A6 K. INOUE

from the equations (3.7), (3.8) and (3.9), it is easily seen that the £2+1 st column of each W; and
Q; is uniquely determined by the vectors e;,7,,...... ,Ur+2 and also that of each W ,(A) and Q,,(A)
satisfies the assigned conditions. This completes the proof of theorem 1.
For any positive integer m (m=n), put
KN =((A—M)e1, (A2—N2D)er,......,(A"—2mD)ey).
Then it is easy to show that
KN =(A—N) Vo (Z—AT,)"1, (3.11)

where I',, is an m X » matrix such that all the superdiagonal elements are equal to one and the
others null.

Suppose now that every leading principal minor determinant of V, m(i’g’ """ ’:Z) is non-

vanishing. Then the theorem 1 and the lemma 2 hold: that is, (4 AW ,,A)=Q..(A), AV ,R,,
=Q,n,0, Where &, is an » X sz unit upper triangular matrix and Q,, o is an z X 7 matrix, the form
of which is alike to that of @,,(0). In this circumstances, we have
THEOREM 2. 0,AN=K,MNR,, , Qm(0)=0Q,n,0,
WA=V, (I—Al',) R,
Moreover, for each j (j=1,2,...,m), the (1,7) element —f;(A) of Q.(A) can be expressed as follows:
S1N)=—w11+4,
i =—wi;4p1 A4+ +pi-1, TN (j=2,3,...... ,7),
where wi; is the (1, 7) element of Qo and p;; is the (7, j) element of R,,.
Proor. Since K,,(A)=(A—A)V ,(/—AI',)~1, if it is verified that X,,(A)R,, has the form
of Q,,(A) and V,(/—AI'y)~1R,, that of W,(}), it is easily seen from the uniqueness in the theorem
1 that the theorem 2 holds. Now, from the direct calculations, we obtain
K, MNR,,=AV R, +XNAV Ly~ V)R +22(AV ,, I ,— V) u R,
AL +Am YAV, T, — V) y» 2R, — A"V, [, 1R,
On the other hand, from the lemma 2, we get 4V ,,R,,=Q,,,0. Clearly AV, I",,—V,,=—(ey,
0,...... ,0). Hence it is easy to see that

(3.12)

(3.13)

Put now &,,=(p;;), where p;;=1 and p, ;=0 (z>>7), and also put Q,, 0=(w,;), where w,;=0 (7=

2,3,...... ym; < j=<m). Then it follows from the above relation that
A ) ) e —fo ) )
wsq 0 0 e 0
KnNRp=| | l . .
Wom1 W2 W3 Womym—1 0
wrln-%l,l wm+l,2 wm+l,3"’ ””wm-fl,m—l wml-*-l,m
@ Wn2 Wy e wn,;n—»l wln,m )’
where f](A): —w11+/\
and fj(A)Z—wlj—{—p]j)l—*— """ —l—pjhl,j/\j—‘l—*—/\j (]=2,3, ...... ,M).

6)



Note on the Weber-Voetter method AT

Further, it follows at once from the direct calculations that the matrix V,,(/—AI',)"1R,,
is of the same form as that of Wpy(\) obtained in the Weber-Voetter reduction, which

completes the proof of theorem 2.

4. Minimal polynomial.

THEOREM 3.  Under the same assumpiion as in the theorem 1, the m—+1 consecutive Krylov

n), e;TP,(N)e,=0, where P,A)=(A—A)Ms(A)------ M, (N). When that is the case, f,,(A)=

—e1TP(Ne, is the monic minimal polynomial for ey with respect 1o A.

Proor. To prove sufficiency, suppose first that for all 7 (=m+1,m1-2,...... 72), €7 PL(AN)e,,
=0. Because of V’”GZZZ:;) #0 (z=1,2,...... ,m), it follows directly from the lemma 2 that
there exist two uniquely determined matrices &,, and Q,,0 which satisfyv the relation

AV, R,=Q 0, (4.1)
where R,,=(p;;) i1s an m X unit upper triangular matrix and Q,,0=(w,;) is an » X 7 matrix
which w; ;=0 for each pair (7, j) (7=2,3,...... ;i< j<m). Hence we get

(A V)R m™) =Qm,0€n™. (4.2)
The left hand side in this expression can be written as
01mV2 -+ P23~ 00" FPm1,mVmt+Usm+1- (4.3)
On the other hand, it follows instantly from the theorem 2 that
Qm(0)=Qm,o- (4.4)

Evidently our assumption leads to ¢;,7 Q.. 06" =7 Qm(0)e,,* =, 7 P,,(AN)e,, =0 (=2,3,...... ). So

that, the right hand side in the expression (4.2) can be expressed as

Qm,()em* =W1,;€1- (45)
Consequently, it is easily seen from (4.2), (4.3) and (4.5) that
— W11+ LrmUa e +Oom1,mVm+Vmt1=0 (4.6)

But while, from the theorem 2,

fm(/\) = —eler(A)em* = —elTpm(A)fm
= — W1t Ot FPm—1,mA T A

Hence the identity (4.6) means that f,,(4)e;=0. Because of V’”G’% """ ’Z) #0, the », con-
. ,
secutive Krylov vectors e;,7,,...... .U are linearly independent, which is to say that f,,(}) is the

monic minimal polynomial for ¢; with respect to 4. This completes the proof of sufficiency.

Conversely, suppose that eq,v,,...... ,9m and ©v,.4; are linearly dependent. Because of
V,,,G"g’ """ ’Z) #0, it is evident that z,,+, can be written as a linear combination
12y ,
Ut 1=01€1 QU2 2 +nom, (4.7)
where a; (7=1,2,...... ,m) are scalars. On the other hand, by applying again the theorem 2 and

the lemma 2, we get relations (4.1) and (4.4). Hence also the relation (4.2) holds: that is,

»n
_wlmel—l"olva_}‘ """ +‘0m—l,m7}m+vm+l= ) 2_,_1 Wi m€s.
1=m

C7)



A8 K. INOUE
Taking the relation (4.7) into account, we obtain immediately
81€1+822)2+ ---- —I—vamz ”2 Wiy, (4.8)
i=m+1

where 81=—w1,+a; and 8;=p;—1,m+a; (¢=2,3,...... ,m). Let e;=(e;’,0)T and v,=(v,",v;"")T
(7=2,3,...,,m) be the partitions of e; and v; corresponding to one another, where ¢;,” and v,’are

m dimensional vectors. Then equation (4.8) is equivalent to the system of the following two

equations:
S1e1"+8zv0" H------ 48,0, =0, 4.9)
Soy” eenee F8,0m =Dt 1,my Ot 2,msenene- RO L
But while, from our hypothesis, we get clearly det(ey,v2,...... ' )#0. Therefore, it follows
instantly that 8§;=08z=------ =34,,=0. Consequently, we see from (4.9) that w;,,=0 (F=m-1,
m—+2,...... ,7), which is to say that the conditions of our theorem are necessary.

COROLLARY. Under the same hypothesis as in the theorem 3, the m—-1 consecutive Krylov
vectors e1,vg,...... U QN U,y are linearly independent if and only if there is at least one positive
integer 1, such that m+1=zi,,<n and e;," P,(A)e,+0.

5. Application of the principle of pivot.

In this section, we will strictly apply the principle of pivot to each step of the Weber-Voetter
reduction. Then we give attention to the fact that such reduction is not unique. Starting with
A—M, put Py(A)=A—X/. And let w;,; be an element of maximal modulus among the elements
e;TPi(MNey (1=2,3,...... ,7) of the first column of P;(A). If w;,;1=0, the effective reduction finishes
in this first stage. While, if w;,17#0, let 2;’(\) be the matrix similarly transformed by applying
a suitable elementary permutational transformation to /;(d) in order to bring the element w;,,;
to the pivotal position (2,1). For this matrix 2;'(d), the second step of reduction is carried out.
The matrix thus obtained can be expressed as P;'(A) Mp(A)=/Fo(A). Let w;,2 be an element of
maximal modulus among the elements e;7 Pz2(X)ep (7=3,4,...... ,7). If w;s =0, our reduction finish-
es in this step. And if w;,2#0, then Z,(}) is similarly transformed by an adequate elementary
permutational transformation in order to bring the element w;,» to the pivotal position (3,2) of the
transformed matrix 2’(A). And so on. Thus, each step of the reduction described above can

be written as follows:

Pr()=A—A, PN =12, 1N /21,
Pr(N) =P (N M), Py'(N)=13;,P3(N) 35,
................................................... (5.1)
PXN)=PLP1' N, Pl N =1141,:1 PN L 141,00
where 7;;=7—(e;—e;)(e;—e;)T (4, 7=1,2,...... ,7). Moreover it is easily seen that for each 7
(¢=mn),
€,'TP/(/\)€J‘=€,'TP;()\)€J" (Z',j=1,2, ...... ,l), (52)

le,TPY Ve |=Sle; 1T P Ne;l (j=1,2,......,0; j+2=2=n).
Suppose now that the reduction (5.1) was effectively carvied out up to the m-stage (m=n)
making a start with the first.

(8)



Note on the Weber-Voetter method A9

Put Am=7T,"147T,, (5.3)
and also put MAN=T, 1T \MNT-1717,, (¢=2,3,...... J), (5.4)
where Trp=13; 13;5 Let1,in (k:1727 """" ;).

Clearly 4 is an 7 X » matrix and M, (}) is alike to M,(X) except only the permutation of the
last #—¢ elements of the #th column. If we now introduce the intermediate matrices 2,(»)(A)
(7==1, 2,...... ,m), the reduction described above can be expressed as

Pim(Q)y=A4(m —)\], Pom(Q) =P Q) Mo m(A),......... ,

PN =Ly 1 DN M DN = (A —AT) M) - MmN,
where 2,,'(A)=2,,(m(A) and P,(")()) has the same form as those of matrices 2,(A) and 2,/(A) (=1,

2. ,m) in the reduction (5.1). Further it is evident from the relations (5.2) that for each ¢

(5.5)

e TPmNe;=e,T P/ (Ne;=e;,TP(Ne; (4,7=1,2,...... D),
e;,T P mMNe,;,=e, TP/ (Ne; (Z,7=1,2,...... 1), (5.6)
and e, TPmMNe | <le; 1 TPMN)e;| (j=1,2,...... 2y JH2=Zi<n).

Accordingly, our assumption implies that the Weber- Voetter reduction (5.5) for A can be
straight and effectively carvied through up to the m-stage beginning with the first. Then it is
evident that

7 ne1=e1. 5.7
Let e ua(m ... i m be the sequence of the Krylov vectors for ¢; with respect to 4. It

follows clearly that for each 7 (7/=2,3,...... ),

;M =T, "1p;. (5.8)
Put V;=(e1,vq,...... ,v7) and put V,m=(e,u(m,. . ... ,v;0m) for any positive integer ;. We get
clearly

Vim=7,-1V, (j=12,...... )- (5.9)

We see therefore that 17;(» is of rank ; if and only if 77;is so. Under the above assump-
tion, we have

LemMmA 3. The Weber- Voetter reduction (5.5) for A is straight and effectively carried
through up to the m-stage starting off with the first tf and only if every leading principal minor

determinant of V,,(m G’g’ """ ’Z} is non-vanishing; and, when that is so, the reduction is unigque.
1 2yenann ,

Proor. By applying the theorems 1, 2 and the lemma 2 to 4() it is easily seen that the
condition in lemma 3 is sufficient. Hence it may be enough to show the necessity of the condition.

Suppose now that the reduction (5.5) for 4(» was straight and effectively carried out up to

the m-stage. Because of Vm(m)( i >:1, assume that there was a positive integer 4 such that

1<k<m,

(1,2t - (12 A1)
v )(1’2, _____ ,Z);&o (1=1,2,.....,#) and ¥, ><1’2’ ______ ,k+1>‘0‘

Applying the theorems 1, 2 and the lemma 2 to A, we see that the reduction (5.5) for A(»
can be straight, effectively and uniquely carried out up to the 4-stage beginning with the first.
Obviously the principal part of this reduction can be represented as (4 ") —AZ) W (" (X) = Q" (}),
where () (X) and Q" (A) are » X 2 matrices corresponding to those of the reduction (3.2) of

C9)
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A in section 3. On the other hand, applying the lemma 2 to 4 (), we see that there exist two uni-
quely determined matrices &R and Qg,0(™ which satisfy the relation A4 P0m Ry (m =y o™,
where ;") is a £ % unit upper triangular matrix and Qg ¢ =(w; ;(*) is an z X £ matrix having
the same property as that of Qg in the lemma 2: that is, w; ;" =0 (7=2,3,...... Ry IS 7SA).
Applying the theorem 2 to A4(m)  we get immediately Q" (0)=Qo(. On account of our
assumption and the property (2) of lemma 2 for 4(m) it is easily seen that wg+1,2(” =0, which
implies that w, (" =0 (F=4-+2, £+3,...... ,7), because our present reduction satisfies the relations
(5.6) for #=+£4. Consequently, we see that the effective reduction in (5.5) finishes in this Z-stage.
Because of 2<<#z, this contradicts our hypothesis. ~Therefore, it is necessary that every leading

1,2,...,m
1,2

principal minor determinant of 7’ m<m)( )is non-null. This completes the proof of lemma 3.

9L ey

THEOREM 4. Lez A be an n X n matrix. Suppose that the principle of pivot described at the
outset in this section is strictly applied at eac’ stage of the Weber- Voetter reduction. Then the
Sfollowing (1), (2) and (3) hold:

Q) The reduction is effectively carried through up to the m-stage (m <n) beginning with the
Jerst if and only if the m consecutive Krylov vectors ey, v.,...... sUm for the starting vector ey with
vespect to A are linearly independent.

(2) In the case when (1) holds, the m+1 consecutive Krylov vectors ey,vs,...... yUm ARA Vi
are linearly dependent if and only tf for all i G=m-+1, m+2,...... ,m), the (¢,m) element of P,,' (A)
vanishes, where P,'(X) is the matrix oblained at the m-stage of reduction.

() In the case when (2) holds, the (1, m) element —f,,(N) of the matrix P, (N) except the
negative sign is identical with the monic minimal polynomzal of e, with respect to A and hence,
in general, that of A itself. In particular if m=n, f,() is clearly the eigenpolynomial of A.

Proor. In the (1) of our theorem, it is evident that the linear independency of the » con-

secutive Krylov vectors ¢;,7s,...... ,Um 1s necessary. In fact, under our circumstances, it follows
1,2,...... ,m)

1,2,...... R

is non-vanishing. While, from the relations (5.7) and (5.9), we get 7', e;=¢; and V,,=7",,, V(™

directly from the lemma 3 that every leading principal minor determinant of 7’ m("')(

where 7', is the permutational transformation associated with the applications of the principle of
pivot. This means that eq,v,,...... ,Um are linearly independent.

In this circumstances, evidently the linear dependency of the 41 consecutive Krylov
vectors e1,7s,...... sUm+1 for e; with respect to the original matrix 4 is equivalent to that of the
m—-1 consecutive Krylov vectors ej,up(m) ... Um+1? for e; with respect to 4. Applying
now the theorem 3 to 4, we see that the m -1 consecutive Krylov vectors e,z . ..... SV
and v,,+1(" are linearly dependent if and only if ¢,72,,'(A)e,,—0 for all 7 (F=m+1,m+2,...... ),
and also, in this case, that f,(A\)=—e72, (A)e,, is the monic minimal polynomial of ¢; with
respect to 4, which is to say that f,,(}) is that of e; with respect to the original matrix A4, .
because the relations (5.7) and (5.8) hold: that is, 7%,e;=e; and 7,v,")=v; for all 7 (/=2,
3,...... ,m~+1). Hence clearly f,,(A) is, in general, the monic minimal polynomial of A itself.
Consequently, we see that (2) and (3) in our theorem hold.

Finally, to prove the sufficiency in the (1) of our theorem, suppose that e;,v,...... »Um are
linearly independent. Then certainly there is a permutational transformation 2 such that every

leading principal minor determinant of PV,,,G’%’ """ ’Z) is non-null. By applying the
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theorems 1,2 and the lemma 2 to PAP~1, we see that the Weber-Voetter reduction for P4 P!
can be carried through up to the m-stage starting off with the first. Hence, judging from the
above discussions, it seems that the linear independency of Krylov vectors 1,73, ...... ,Um 1s sufficient

for our particular reduction (5.1) described at the outset in this section to be carried out up to the

m-stage beginning with the first. But in this place, we shall show it in the following manner.

First, put 2;(A)=A —A/, and let w,,1 be an element of maximal modulus among the elements
e;TP1(A)ey (7=2,3,...... ,7) of the first column of #;(A). DBecause of V1<}>:1, in the case when
w;;1=0, it is evident from the theorem 3 that two vectors ¢; and v, are linearly dependent, which
implies the fact that the maximal number of the linearly independent consecutive Krylov vectors
for e¢; with respect to A4 is equal to one and hence »=1. In this case, by putting 2,'(A)=271(}),
our reduction finishes in this first stage. On the contrary, in the case when w;,; #0, by applying
a suitable elementary permutational transformation to 2;()), the element w;,; is transformed

in the pivotal position (2,1) of the similarly transformed matrix 2;’(A), which can be written as
Py (N)=13;, P1(A) L35, =AW —AJ,
where Loiy=1—(ea—e;,)(ea—e; )T and AW =75; A15;,.
Hence certainly the first stage of our pending reduction can be effectively carried out.
Assume now that there is a positive integer £ (1=4 <) such that our pending effective
reduction (5.1) is carried out up to the 4-stage beginning with the first and finishes at this stage.

Then the result of this reduction is represented by means of the expressions obtained from (5.3),

(5.4), (5.5) and (5.6) by putting m=4. Applying now the lemma 3 to A it is easily seen that

every leading principal minor determinant of // k(k)G";’ """ ’é) is non-vanishing. And also it
follows from the above assumption that for each positive integer 7 (/=4-1,A+2,...... ,#), the

(z, #) element of P;'(A) vanishes, where 2;'(A) is the matrix obtained at the 4-stage of reduction.
In this circumstances, applying the theorem 3 to 4®) we see that the £+1 consecutive Krylov
vectors eq, v ... ,Vee1'® for e; with respect to 4® are linearly dependent, which implies the
fact that the £-1 consecutive Krylov vectors e1,0,,......,2z+1 for e; with respect to 4 are also
linearly dependent, because e;=77%e; and v,=730;® (7=2,3,...... ). Taking our hypothesis
into account, it follows from the above result that »z<(4--1. This contradicts the assumption
that £<Cs. Consequently, we see that our pending reduction can be effectively carried through
up to the m-stage starting off with the first. This completes the proof of the sufficiency in the

(1) of our theorem.
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