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Let A be a non-singular real matrix of order », where the inverse of A is strictly positive.
And further, suppose that .4 permits regular splittings in the sense of Varga. For such a
matrix A4, it will be proved that for any given regular splitting 4=41—.A45, A2+#0, the
spectral radius of the corresponding residual matrix Z=.41"14; is always a simple cigen-

value, whether /# is reducible or not.

1. Introduction.

Consider a decomposition of a real matrix 4 which satisfies the following conditions:
A=A1— A, where these matrices are together of order #», 4; is non-singular and also 4,1
and A2 are both non-negative. Any such decomposition of 4, according to the definition
of Varga, is usually called to be a regular splitting of 4. In particular, in the important
case when the inverse of 4 is strictly positive, such regular splittings include most of the
cases of interest: that is, those in the Gauss iteration, in the Gauss-Seidel iteration, in the
method of under relaxation scheme and in their variations. Varga R. S. have shown that
any regular splitting of 4 gives a convergent process if and only if the inverse of 4 is non-
negative. And moreover, in the case when the inverse of A is strictly positive, to such regular
splittings, he extended the theorem of Fiedler-Ptak [1] in the sharper form.

In this paper, we will show that if the inverse of A is strictly positive, and also if 4
permits regular splittings, then for any regular splitting 4=A4;—A4y A2+0, the spectral
radius of the corresponding residual matrix A=A1"142 is always a simple eigenvalue,

whether A is reducible or not.
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2. Preliminaries.

We start with the following simple lemma:

LEMMA. LZLet A>0 and B=0 be two square matrices of order n, and put E—=AB.
Then for the spectral radius p(E) of E, the following relation holds: p(E)=0 if and only
if B=0.

If B=0, there is nothing to prove. Hence suppose that p(£)=0. Then £ is clearly
non-negative reducible. Since 4 and B are both non-negative and in particular 4 >0,

each column of £ is equal to zero, otherwise strictly positive. And moreover, each column
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of B, corresponding to a column of £ that is null, is also equal to zero. Therefore, assuming

now that £=0 does not vanish, there is a permutational transformation 2 such that the

. - . . 0 £
appropriate partition of the transformed matrix 27 £/2 will be of the form [ 0 E;:]’ where

FEi13 and Ess are both strictly positive. Now since Egg is irreducible, from the theorem
of Perron-Frobenius (cf. [2], [6]) on the non-negative irreducible matrices, it follows directly
that the spectral radius p(Z22) of Ea22 is a strictly positive eigenvalue. Hence so is also
p(£). This contradicts our assumption that p(Z) is equal to zero. Consequently, £ must
be null. Hence B also vanishes.

DEFINITION. Let 4, A; and A2 be three real square matrices of order 7, which
satisfy the following conditions: 4=43;—A43, where 4; is non-singular and also 4371
and 43 are both non-negative. From now on, any such decomposition of 4, according to
the definition of Varga, will be named to be a regular splitting of 4.

In this place, we state the following proposition which will be used later:

PROPOSITION 1. The theorem of Varga (cf. [4], [5]).

Let A=A1—As be any regular splitting of A. And put H=A\"1A3. Then for the
spectral radius p(H) of H, the following relation holds: 0=p(H)<1 if and only if 4-1=0.

The proof of this proposition is due to Varga [5]. Suppose that p(#Z)<1. From our
assumption, A; is non-singular, 4;71=0 and obviously Z/=0. Hence 4 is expressed as
follows: 4A=A1(/—H). Since =0 and p(H)<1, by applying the well-known theorem
concerned with A/-matrices, we see immediately that /— /4 is non-singular and (/—/&)~120.
Consequently, it follows directly that 4 is non-singular and 4-1=0.

Conversely, suppose here that 4 is non-singular and 4-1=0. Then /A can be written
as follows: H=({+E)1E, E=A7143. Therefore, eigenvalues of Z and of £, when
properly paired, are related by A(Z =TrAE) Now f(A)ZE%X is a strictly mono-
tonically increasing function of A in the interval [0, o) and also the range of /() is an interval
[0, 1). Since matrices Z and £ are both non-negative, by applying the extended result of

the Perron-Frobenius theorem for non-negative irreducible matrices, it follows that these
spectral radii p(#) and p(£) are eigenvalues of Z and £, respectively. Hence, from the

monotonicity of £(A), we get immediately that ,.(H):% and 0=<p(Z)<1. This

completes the proof.
COROLLARY. [7In proposition 1, if A71>0, then p(H)=0 if and only if A3=0.
In fact, from the proof of proposition 1, it is easy to see that p(/)=0 is equivalent to
p(£)=0. On the other hand, seeing that 4-1>>0, it follows directly from the lemma that
p(£)=0 implies A2=0.

3. Simplicity of spectral radius as eigenvalue.

PROPOSITION 2. LZLet A be a non-singular real matrix of order n, satisfying the
conditions: A~1>0 and A permits regular splittings. Then, for any regular splitting
A=A1—As, if As#0, the spectral radius p(H) of H=A1"1Az is a simple eigenvalue of H.

By our assumption, 471>>0 and also A3 is non-negative and non-null. Hence & can

be written as follows:
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H=(I+E)1E, E—=A4-14,,

where £ is non-negative and does not vanish. While, from the proposition 1 and the corol-
lary, it follows directly that 0<<p(#)=y<1. Moreover, applying the extended result of the
Perron-Frobenius theorem concerned with non-negative irreducible matrices to A, there

is at least one non-negative and non-null vector ¢ such that
He=wyec, y=p(H).
Then it is easy to see that

Ec=7" ¢
1—y
First of all, we will prove that ¢ is strictly positive, whether £ is reducible or not.
Now, let £ be irreducible. Then, if ¢ has at least one null element, by applving the

suitable permutational transformation 2 if necessary, ¢ is clearly partitioned as follows:

£y Eq
¢ 0 ¢c1>0. Let Eoy Ess

instantly that £a1c1=0. Since ¢;>0 and £, =0, £2; must be null. This contradicts that

]be the corresponding partition of PEZPT. Then it follows

E is irreducible. Consequently, we see that ¢ must be strictly positive.
Next, suppose that £ is reducible. Seeing that A=.4"145 is non-negative and
A-1>0, and moreover, applying an adequate permutational transformation P2 to £ if

necessary, the same argument in the lemma of section 2 leads us to the following partition:
0 £z

T —_
P EPM[O Fas

}, where £j2 and FEg are both strictly positive. Put d=P7¢. Then

d1
d
PTEP. And then the following relations hold:

d is non-negative and non-null. Let [ ] be the partition of &, corresponding to that of

1

Since Egg is positive, if &2 has at least one null element, then &3 must be null.

1)  Eiede= ;V— d, 2)  Essdo=—2— ds.
(1)  Eied i, @ (2)  Eoeds =, %

In fact, assuming that & has non-null elements, there is a permutational transformation

Q such that the first 7 elements of Qdp are strictly positive and the others null.

Let de=[j(;j, />0, be the partition of Qds and let QEzzQTz[gi ?;:] be the

corresponding partition of QZ22Q7. Then it follows directly that Fs;/=0. This
contradicts the fact that F#2;>0 and f>0. Hence &2 must be null.

Consequently, the relation (1) shows that 41 must be null. And then evidently & also
vanishes. But while, by our assumption, & is non-null. This contradiction implies that &
is strictly positive. So that, on account of the relation (1), &; is also strictly positive and

then so is also 2. Hence, it is obviously true that ¢ is strictly positive and, seeing the relation

@), p(E)=p(Ee)=1"

Let R+=/{c} be the set of all positive eigenvectors of Z. From the fact that was men-
tioned above, &4 is not empty. And moreover, there exists a positive vector ¢ such that
He=yc, where y=p(H)>0. Then it can be proved that any one vector belonging to &;
is expressed as an adequate positive scalar multiple of ¢, and further matrix A belongs to
the class (M) of matrices in the sense of Householder [3: Chap. 2].

Assuming now that ¢’ is any one vector belonging to R4, there is an eigenvalue 8 of
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H, satisfying the relation Ac'=B¢. Then B is a non-negative real number. Suppose
that B=0, then £¢’ must be null. But £ is non-negative and ¢’ is strictly positive. There-
fore £ must be null. This contradicts that £ is non-null. Consequently 8 must be a positive
number.

Here, considering ¢’-norm of matrix /4, it is easy to see that || ||c=B. On the other

hand, applying the well-known theorem on the norm of matrices, it is evident that
y=p(H)=|H|c.
Hence, on account of the fact that, by the defimitionof p(H), B=p(H), it follows
immediately that
B=y, Hc =yc and ||H ||¢=p(H)=y.
Therefore, certainly Z belongs to class (4#/) of matrices.

Now, if ¢'=¢, there is nothing to prove. Hence, suppose in this place that ¢’ is not
equal to ¢. Then there exists the infimum ag of the set of all real number a which satisfies
the inequality: ac=¢". Put b=aoc—¢. Then & is clearly non-negative and has at least
one null element. And further, it satisfies the following equation: Zbé=yé. Consequently,
applying again the same argument already described above, we see that 4 must be null.
And then ¢'=apc, ap>0. This completes the proof for our present question.

From the above results concerning the set 2, it is easy to see that the rank of matrix
v/—H is equal to n—1. Hence, in the complex vector space C™ of dimension z,
the complex dimension of the eigenspace, belonging to the eigenvalue y, is also equal to one.
On the other hand, since A belongs to class (4#7) of matrices, the well-known theorem on
matrices of class (M) asserts that the complex dimension of the eigenspace corresponding
to y is equal to the algebraic multiplicity of y in the eigenequation of Z. Therefore it follows
that v is a simple eigenvalue of AZ. This completes the proof of proposition 2.

4. Results.

From the facts that was mentioned above, we get the following theorem:

THEOREM. LZet A be a non-singular real matrix of order n whick satisfies the
conditions: A=1>0 and also A permits rvegular splittings. And, for any regular splitting
A=A1—As, put H=A1"YAda. Then, if A2+#0, the spectral radius p(H) of H is a simple
eigenvalue, whether H is reducible or not, and satisfies the following inequality:
0<p(A)<1.

COROLLARY 1. Under the same assumplions as the theovem, p(H)=0 implies
A2==0.

COROLLARY 2. Let A=1—2B be a matrix of order n, where I is identity, B is non-
negative irreducible and further the spectral radius of B is smaller than one. Then for any

regular splitting of A, the same results as the theorem obviously hold.
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