A property of spectral radius of the residual matrix associated with regular splitting in iterative method

by

Kin'ichi Inoue

(Received July 19, 1974)

Let A be a non-singular real matrix of order n, where the inverse of A is strictly positive. And further, suppose that A permits regular splittings in the sense of Varga. For such a matrix A, it will be proved that for any given regular splitting $A = A_1 - A_2$, $A_2 \neq 0$, the spectral radius of the corresponding residual matrix $H = A_1^{-1}A_2$ is always a simple eigenvalue, whether H is reducible or not.

1. Introduction.

Consider a decomposition of a real matrix A which satisfies the following conditions: $A = A_1 - A_2$, where these matrices are together of order n, A_1 is non-singular and also A_1^{-1} and A_2 are both non-negative. Any such decomposition of A, according to the definition of Varga, is usually called to be a regular splitting of A. In particular, in the important case when the inverse of A is strictly positive, such regular splittings include most of the cases of interest: that is, those in the Gauss iteration, in the Gauss-Seidel iteration, in the method of under relaxation scheme and in their variations. Varga R. S. have shown that any regular splitting of A gives a convergent process if and only if the inverse of A is non-negative. And moreover, in the case when the inverse of A is strictly positive, to such regular splittings, he extended the theorem of Fiedler-Pták [1] in the sharper form.

In this paper, we will show that if the inverse of A is strictly positive, and also if A permits regular splittings, then for any regular splitting $A = A_1 - A_2$, $A_2 \neq 0$, the spectral radius of the corresponding residual matrix $H = A_1^{-1}A_2$ is always a simple eigenvalue, whether H is reducible or not.

Acknowledgement. I thank sincerely to Professor K. Okugawa of the Kyoto University for his extremely valuable and kind advices.

2. Preliminaries.

We start with the following simple lemma:

LEMMA. Let A>0 and $B\geq 0$ be two square matrices of order n, and put E=AB. Then for the spectral radius $\rho(E)$ of E, the following relation holds: $\rho(E)=0$ if and only if B=0.

If B=0, there is nothing to prove. Hence suppose that $\rho(E)=0$. Then E is clearly non-negative reducible. Since A and B are both non-negative and in particular A>0, each column of E is equal to zero, otherwise strictly positive. And moreover, each column

A 2 K. INOUE

of B, corresponding to a column of E that is null, is also equal to zero. Therefore, assuming now that $E \ge 0$ does not vanish, there is a permutational transformation P such that the appropriate partition of the transformed matrix P^TEP will be of the form $\begin{bmatrix} 0 & E_{12} \\ 0 & E_{22} \end{bmatrix}$, where E_{12} and E_{22} are both strictly positive. Now since E_{22} is irreducible, from the theorem of Perron-Frobenius (cf. [2], [6]) on the non-negative irreducible matrices, it follows directly that the spectral radius $\rho(E_{22})$ of E_{22} is a strictly positive eigenvalue. Hence so is also $\rho(E)$. This contradicts our assumption that $\rho(E)$ is equal to zero. Consequently, E must be null. Hence E also vanishes.

DEFINITION. Let A, A_1 and A_2 be three real square matrices of order n, which satisfy the following conditions: $A = A_1 - A_2$, where A_1 is non-singular and also A_1^{-1} and A_2 are both non-negative. From now on, any such decomposition of A, according to the definition of Varga, will be named to be a regular splitting of A.

In this place, we state the following proposition which will be used later:

PROPOSITION 1. The theorem of Varga (cf. [4], [5]).

Let $A = A_1 - A_2$ be any regular splitting of A. And put $H = A_1^{-1}A_2$. Then for the spectral radius $\rho(H)$ of H, the following relation holds: $0 \le \rho(H) < 1$ if and only if $A^{-1} \ge 0$.

The proof of this proposition is due to Varga [5]. Suppose that $\rho(H) < 1$. From our assumption, A_1 is non-singular, $A_1^{-1} \ge 0$ and obviously $H \ge 0$. Hence A is expressed as follows: $A = A_1(I - H)$. Since $H \ge 0$ and $\rho(H) < 1$, by applying the well-known theorem concerned with M-matrices, we see immediately that I - H is non-singular and $(I - H)^{-1} \ge 0$. Consequently, it follows directly that A is non-singular and $A^{-1} \ge 0$.

Conversely, suppose here that A is non-singular and $A^{-1} \ge 0$. Then H can be written as follows: $H = (I + E)^{-1}E$, $E = A^{-1}A_2$. Therefore, eigenvalues of H and of E, when properly paired, are related by $\lambda(H) = \frac{\lambda(E)}{1+\lambda(E)}$. Now $f(\lambda) = \frac{\lambda}{1+\lambda}$ is a strictly monotonically increasing function of λ in the interval $[0, \infty)$ and also the range of $f(\lambda)$ is an interval [0, 1). Since matrices H and E are both non-negative, by applying the extended result of the Perron-Frobenius theorem for non-negative irreducible matrices, it follows that these spectral radii $\rho(H)$ and $\rho(E)$ are eigenvalues of H and E, respectively. Hence, from the monotonicity of $f(\lambda)$, we get immediately that $\rho(H) = \frac{\rho(E)}{1+\rho(E)}$ and $0 \le \rho(H) < 1$. This completes the proof.

COROLLARY. In proposition 1, if $A^{-1}>0$, then $\rho(H)=0$ if and only if $A_2=0$. In fact, from the proof of proposition 1, it is easy to see that $\rho(H)=0$ is equivalent to $\rho(E)=0$. On the other hand, seeing that $A^{-1}>0$, it follows directly from the lemma that $\rho(E)=0$ implies $A_2=0$.

3. Simplicity of spectral radius as eigenvalue.

PROPOSITION 2. Let A be a non-singular real matrix of order n, satisfying the conditions: $A^{-1}>0$ and A permits regular splittings. Then, for any regular splitting $A=A_1-A_2$, if $A_2\neq 0$, the spectral radius $\rho(H)$ of $H=A_1^{-1}A_2$ is a simple eigenvalue of H.

By our assumption, $A^{-1}>0$ and also A_2 is non-negative and non-null. Hence H can be written as follows:

$$H=(I+E)^{-1}E, E=A^{-1}A_2,$$

where E is non-negative and does not vanish. While, from the proposition 1 and the corollary, it follows directly that $0 < \rho(H) = \gamma < 1$. Moreover, applying the extended result of the Perron-Frobenius theorem concerned with non-negative irreducible matrices to H, there is at least one non-negative and non-null vector c such that

$$Hc = \gamma c, \qquad \gamma = \rho(H).$$

Then it is easy to see that

$$Ec = \frac{\gamma}{1-\gamma} c.$$

First of all, we will prove that c is strictly positive, whether E is reducible or not.

Now, let E be irreducible. Then, if c has at least one null element, by applying the suitable permutational transformation P if necessary, c is clearly partitioned as follows: $Pc = \begin{bmatrix} c_1 \\ 0 \end{bmatrix}$, $c_1 > 0$. Let $\begin{bmatrix} E_{11} & E_{12} \\ E_{21} & E_{22} \end{bmatrix}$ be the corresponding partition of PEP^T . Then it follows instantly that $E_{21}c_1 = 0$. Since $c_1 > 0$ and $E_{21} \ge 0$, E_{21} must be null. This contradicts that E is irreducible. Consequently, we see that c must be strictly positive.

Next, suppose that E is reducible. Seeing that $E=A^{-1}A_2$ is non-negative and $A^{-1}>0$, and moreover, applying an adequate permutational transformation P to E if necessary, the same argument in the lemma of section 2 leads us to the following partition: $P^TEP=\begin{bmatrix}0&E_{12}\\0&E_{22}\end{bmatrix}$, where E_{12} and E_{22} are both strictly positive. Put $d=P^Tc$. Then d is non-negative and non-null. Let $\begin{bmatrix}d_1\\d_2\end{bmatrix}$ be the partition of d, corresponding to that of P^TEP . And then the following relations hold:

(1)
$$E_{12}d_2 = \frac{\gamma}{1-\gamma} d_1$$
, (2) $E_{22}d_2 = \frac{\gamma}{1-\gamma} d_2$.

Since E_{22} is positive, if d_2 has at least one null element, then d_2 must be null.

In fact, assuming that d_2 has non-null elements, there is a permutational transformation Q such that the first i elements of Qd_2 are strictly positive and the others null. Let $Qd_2 = \begin{bmatrix} f \\ 0 \end{bmatrix}$, f > 0, be the partition of Qd_2 and let $QE_{22}Q^T = \begin{bmatrix} F_{11} & F_{12} \\ F_{21} & F_{22} \end{bmatrix}$ be the corresponding partition of $QE_{22}Q^T$. Then it follows directly that $F_{21}f = 0$. This contradicts the fact that $F_{21} > 0$ and f > 0. Hence d_2 must be null.

Consequently, the relation (1) shows that d_1 must be null. And then evidently d also vanishes. But while, by our assumption, d is non-null. This contradiction implies that d_2 is strictly positive. So that, on account of the relation (1), d_1 is also strictly positive and then so is also d. Hence, it is obviously true that c is strictly positive and, seeing the relation (2), $\rho(E) = \rho(E_{22}) = \frac{\gamma}{1-\gamma}$.

Let $R_+=\{c\}$ be the set of all positive eigenvectors of H. From the fact that was mentioned above, R_+ is not empty. And moreover, there exists a positive vector c such that $Hc=\gamma c$, where $\gamma=\rho(H)>0$. Then it can be proved that any one vector belonging to R_+ is expressed as an adequate positive scalar multiple of c, and further matrix H belongs to the class (M) of matrices in the sense of Householder [3: Chap. 2].

Assuming now that c' is any one vector belonging to R_+ , there is an eigenvalue β of

A 4 K. INOUE

H, satisfying the relation $Hc'=\beta c'$. Then β is a non-negative real number. Suppose that $\beta=0$, then Ec' must be null. But E is non-negative and c' is strictly positive. Therefore E must be null. This contradicts that E is non-null. Consequently β must be a positive number.

Here, considering c'-norm of matrix H, it is easy to see that $||H||_{c'} = \beta$. On the other hand, applying the well-known theorem on the norm of matrices, it is evident that

$$\gamma = \rho(H) \leq ||H||_{c'}$$
.

Hence, on account of the fact that, by the definition of $\rho(H)$, $\beta \leq \rho(H)$, it follows immediately that

$$\beta = \gamma$$
, $Hc' = \gamma c'$ and $||H||_{c'} = \rho(H) = \gamma$.

Therefore, certainly H belongs to class (M) of matrices.

Now, if c'=c, there is nothing to prove. Hence, suppose in this place that c' is not equal to c. Then there exists the infimum a_0 of the set of all real number a which satisfies the inequality: $ac \ge c'$. Put $b=a_0c-c'$. Then b is clearly non-negative and has at least one null element. And further, it satisfies the following equation: $Hb=\gamma b$. Consequently, applying again the same argument already described above, we see that b must be null. And then $c'=a_0c$, $a_0>0$. This completes the proof for our present question.

From the above results concerning the set R_+ , it is easy to see that the rank of matrix $\gamma I - H$ is equal to n-1. Hence, in the complex vector space C^n of dimension n, the complex dimension of the eigenspace, belonging to the eigenvalue γ , is also equal to one. On the other hand, since H belongs to class (M) of matrices, the well-known theorem on matrices of class (M) asserts that the complex dimension of the eigenspace corresponding to γ is equal to the algebraic multiplicity of γ in the eigenequation of H. Therefore it follows that γ is a simple eigenvalue of H. This completes the proof of proposition 2.

4. Results.

From the facts that was mentioned above, we get the following theorem:

THEOREM. Let A be a non-singular real matrix of order n which satisfies the conditions: $A^{-1}>0$ and also A permits regular splittings. And, for any regular splitting $A=A_1-A_2$, put $H=A_1^{-1}A_2$. Then, if $A_2\neq 0$, the spectral radius $\rho(H)$ of H is a simple eigenvalue, whether H is reducible or not, and satisfies the following inequality: $0<\rho(H)<1$.

COROLLARY 1. Under the same assumptions as the theorem, $\rho(H)=0$ implies $A_2=0$.

COROLLARY 2. Let A=I-B be a matrix of order n, where I is identity, B is non-negative irreducible and further the spectral radius of B is smaller than one. Then for any regular splitting of A, the same results as the theorem obviously hold.

References.

[1] Fiedler, M. and Pták, V., Über die Konvergenz des Verallgemeinerten Seidelschen Verfahrens zur Lösung von Systemen linearer Gleichungen, Math. Nachr. 15, (1956), 31-38.

- [2] Frobenius, G., Über Matrizen aus nicht negativen Elementen, S. -B. Preuss. Akad. Wiss., Berlin, (1912), 456-477.
- [3] Householder, A. S., The Theory of Matrices in Numerical Analysis, Blaisdell Publishing Co., New York, (1964).
- [4] Stein, P. and Rosenberg, R. L., On the solution of linear simultaneous equations by iteration, J. London Math. Soc. 23, (1948), 111-118.
- [5] Varga, R. S., Matrix Iterative Analysis, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, (1962).
- [6] Wielandt, H., Unzerlegbare, nicht negative Matrizen, Math. Z. 52, (1950), 642-648.