トマト水耕栽培における種々の培養液条件下でのリンの昼夜間吸収

寺林敏・澁井謙・稲田貴子
田中正彦・並木隆和

Phosphate uptake during the day and the night by tomato grown in water-culture under various conditions of culture solution.

SATOSHI TERABAYASHI, KEN TAKII, TAKAKO INADA
MASAHIKO TANAKA and TAKAKAZU NAMIKI

要旨：水耕トマトにおけるリンの昼夜間吸収を種々の培養液条件のもとで測定し、リンの吸収特性を調査した。
園試処方の培養液濃度が25％、50％、100％と高くなるにしたがい、リン吸収量が増加した。リンの夜間吸収率（1日の吸収量に対する夜間吸収量の比）は25％濃度でいちばん低く、50％濃度でいちばん高い値を示した。
园試処方50％濃度液を基本に、リン濃度のみ変化させた場合、リン濃度が高いほどリンの夜間吸収率は低下した。この傾向はカルシウムにおいても認められた。
リン酸塩の単独施与、培養液への塩化ナトリウムの添加、多価陽イオンの共存等の処理によってリン吸収量に増減が生じても、リンの夜間吸収率の変化はわずかであった。
以上の実験から、リンは他の養分に比べ、高い割合で夜間に吸収されることが確認された。リンの夜間吸収率は培養液内のリン濃度に影響され、リン濃度以外の培養液条件では、水分吸収量やリン吸収量が変化しても容易に変動しないことがわかった。

緒言

水耕栽培したトマトでは、栽培時期や生育段階の違いに関わらず、リンの1日の全吸収量に対する夜間の吸収量の割合が、水分や他の養分との比較で変化する傾向を示した（寺林ら，1984）。しかし、リンがなぜ水分吸収量の少ない夜間においても盛んに吸収されるのか明らかでない。培養液からの養分の吸収は、培養液の組成、濃度等、種々の培養液条件に強く左右され、しかも個々の養分でその反応も異なる。

本研究では、リンの昼夜間吸収を培養液濃度及び組成など、リン吸収条件の異なる種々の条件で測定し、リンの高い昼夜間吸収の現象を検証すると共に、他の養分との比較を行い、リンの昼間と夜間の吸収様相からみた、リンの吸収特性能明らかにすることを目的に実験を行った。

京都府立大学農学部園芸園芸学研究室
Laboratory of Olericulture, Faculty of Agriculture, Kyoto Prefectural University, Kyoto, Japan
平成2年8月15日 受理
材料及び方法

実験1 培養液濃度とリンの昼夜間吸収

供試植物は「大型福寿」とし、以下すべての実験においても同品種を用いた。土壌型果菜用土崎ベッドで水耕栽培した第1花房期期の植物体を園試験にて培養液（100％濃度液）、同2分の1濃度液（50％濃度液）、同4分の1濃度液（25％濃度液）に移し、3日間の養分水の昼間及び夜間の吸収量を測定した。容積25ℓの栽培槽1ケースあたり4株とし、各区3反復とした。通気は小型エアーポンプで行った。いずれの培養液も微量元素は園試験方の100％濃度とした。以下の実験も同様である。

実験2 リン濃度とリンの昼夜間吸収

第1花房開期期まで実験1と同様に育苗した。処理区はリン濃度0.5me/l区、2me/l区、8me/l区で、他の多量要素濃度は園試験方50％濃度液と同じである。なお、リンとの比較のため、カルシウムにつけても同様の実験を行った。処理区はカルシウム濃度1me/l区、4me/l区、16me/l区である。容積25ℓの栽培槽1ケースあたり2株とし、各区3反復とした。

実験3 リン酸溶液からのリンの昼夜間吸収

実験1と同様に育苗し、第1花房開期期の植物体を供試した。処理区は園試験方50％濃度液、リン酸ーアンモニウム溶液（園試験方のリン酸）。リン酸ーアンモニウム溶液液で、いずれもリン濃度は2me/lである。測定期間は4日間とした。

実験4 高濃度塩化ナトリウム溶液を添加した培養液からのリンの昼夜間吸収

実験1と同様に育苗し、容積25ℓの栽培槽に1ケースあたり3株とし、各区3反復とした。養分水の吸収を阻害する目的で、塩化ナトリウム溶液を添加した。処理区は園試験方50％濃度液を基本の培養液とし、塩化ナトリウム溶液0ppm、同培養液に塩化ナトリウム溶液を添加2000ppm、同塩化ナトリウム溶液を2000ppm加えた区をもとけた。第2花房開期期にて培養液を移し、4日間の昼間時間の養分水吸水量を測定した。

実験5 流動培養液からのリンの昼夜間吸収

実験1と同様に育苗した株を育苗に用いた同型のベッドに1ベッドあたり6株の割合で定植し、各区3反復とした。培養液の通気は小型エアーポンプで行った。9時から15時までの6時間直射、21時から朝の3時までの6時間直射を真夜中とした。各々の時間帯にて培養液の更新を行った。培養液は園試験方50％濃度液を使用した。培養液を常温流動させ、養分水の吸収促進をはかった。培養液の循環はポンプを用い、毎分23ℓの流速で1時間あたり15分の割合で行った。培養液は1ベッドあたり40ℓとした。培養液がベッドの幅全面に一様に流れるよう、ベッドの横方向に等間隔に4箇所の培養液流入口を設けた。測定期間は1日である。

実験6 多価陽イオンによるリン吸収促進の昼夜間吸収

実験1と同様に育苗し、容積25ℓの栽培槽に3株ずつ定植し、各区3反復とした。リン酸ーアンモニウム溶液、リン酸ーアンモニウム溶液1mMの硝酸カリウムを加えた硝酸カリウム、同様に1mMの硝酸カリウムを加えた硝酸カリウムの3区を設けた。リン濃度はいずれの区も5me/lとした。昼間及び夜間の水分及びリンの吸収量を4日間測定した。

結果

実験1

養分水の吸収量を第1表に示した。昼夜間合計の水分吸収量は培養液濃度が高いほど少なかった。リンの吸収量は昼間吸収量も培養液濃度が高いほど多かった。リン以外の養分については、各々の養分で培養液濃度の上昇にともなう吸収量の変化の様相が異なった。硝酸亜塩素は25％濃度から50％濃度の間で、カリウムは30％濃度から100％濃度の間で吸収量の増加が認められた。カルシウムは培養液濃度の上昇に対しては、吸収量の増加の程度が小さく、マグネシウムでは培養液濃度が高いほど吸収量は少なかった。

養分の吸収濃度（水分吸収量のあった養分吸収量）を第2表に示した。リンの昼間吸収濃度は100％濃度液区が16.7me/l、50％濃度液区が15.1me/l、25％濃度液区が9.8me/lで、100％濃度液との間では、吸収濃度の差は小さかった。昼間のリン吸収濃度は25％濃度液区、50％濃度液区でそれぞれ施業漬濃度に近い値を示したのに対し、100％濃度液区は昼間のリン吸収濃度が2.1me/lと施業濃度の約半分の低い値を示した。100％濃度液区ではいずれの養分も1日の平均吸収濃度は施業濃度よりも低く、その程度はマグネシウムで大きく、リンがいちばん小さかった。

第3表に夜間吸収率を示した。水分の夜間吸収率は3つの区の間では差がなかった。リンの夜間吸収率は3つの区の間で一定した傾向を示さなかった。リン以外の養分の夜間吸収率は25％濃度区でいちばん高い値を示した。

実験2

水分とリンの吸収量、リン吸収濃度を第4表に示した。水分の吸収量はリン濃度の高い区で少なかった。しかしながら、水分の夜間吸収率は3つの区間で差がなかった。昼間間合計の筋吸収量は0.5me/l区が9.9me、2.0me/l区が18.1me、8me/l区が28.1meであった。0.5me/l区のリン吸収濃度は、昼間が1.1me/1、
Table 1. Rate of nutrient and water uptake by tomato plants cultured in various concentrations of culture solution.

<table>
<thead>
<tr>
<th>Strength of soln (%)</th>
<th>Time of absorption</th>
<th>Rate of uptake (water: 1/100 g D.W./3 days)</th>
<th>nutrient: me/100 g D.W./3 days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Water</td>
<td>NO₃-N</td>
</tr>
<tr>
<td>25%</td>
<td>day</td>
<td>5.88</td>
<td>25.5</td>
</tr>
<tr>
<td></td>
<td>night</td>
<td>0.48</td>
<td>11.4</td>
</tr>
<tr>
<td></td>
<td>whole day</td>
<td>6.36</td>
<td>36.9</td>
</tr>
<tr>
<td>50%</td>
<td>day</td>
<td>5.57</td>
<td>35.1</td>
</tr>
<tr>
<td></td>
<td>night</td>
<td>0.49</td>
<td>12.8</td>
</tr>
<tr>
<td></td>
<td>whole day</td>
<td>6.06</td>
<td>47.9</td>
</tr>
<tr>
<td>100%</td>
<td>day</td>
<td>5.05</td>
<td>34.0</td>
</tr>
<tr>
<td></td>
<td>night</td>
<td>0.45</td>
<td>12.3</td>
</tr>
<tr>
<td></td>
<td>whole day</td>
<td>5.50</td>
<td>46.3</td>
</tr>
</tbody>
</table>

Table 2. Rate of nutrient to water absorbed.

<table>
<thead>
<tr>
<th>Strength of soln (%)</th>
<th>Time of absorption</th>
<th>Rate of nutrient to water absorbed (me/1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NO₃-N</td>
</tr>
<tr>
<td>25%</td>
<td>day</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td>night</td>
<td>23.9</td>
</tr>
<tr>
<td></td>
<td>whole day</td>
<td>5.8</td>
</tr>
<tr>
<td>50%</td>
<td>day</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td>night</td>
<td>26.2</td>
</tr>
<tr>
<td></td>
<td>whole day</td>
<td>7.9</td>
</tr>
<tr>
<td>100%</td>
<td>day</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td>night</td>
<td>27.1</td>
</tr>
<tr>
<td></td>
<td>whole day</td>
<td>8.6</td>
</tr>
</tbody>
</table>

夜間が4.5me/1で, 夜間のリノ濃縮率（施与濃度に対する吸収濃度の比）は9と高い値を示した。2.9me/1区のリノ吸収濃度は，昼間が4.3me/1で3つの区の中では施与濃度にいちばん近い値であった。夜間の吸収濃度は9.2me/1と施与濃度よりもはるかに高かった。8me/1区の1日の平均吸収濃度は5.7me/1で，施与濃度よりも低かった。しかし，夜間の吸収濃度は12.3me/1で施与濃度よりもおお高い値を示した。リノの夜間吸収率は0.5me/1区が52%，2.9me/1区が50%，8.0me/1区が43%で，培養液中のリノ濃度が高いほど低かった（第1図）。
Table 3. Rate of uptake at night to that in whole day.

<table>
<thead>
<tr>
<th>Strength of soln (%)</th>
<th>Rate of uptake at night to that in a whole day. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water</td>
</tr>
<tr>
<td>25%</td>
<td>8</td>
</tr>
<tr>
<td>50%</td>
<td>8</td>
</tr>
<tr>
<td>100%</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 4. Rate of phosphate and water uptake by tomato plants during day and night cultured in different phosphate concentration in the culture solution.

<table>
<thead>
<tr>
<th>P-conc. (me/1)</th>
<th>Time of absorption</th>
<th>Rate of uptake</th>
<th>Rate of phosphate to water absorbed (me/1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water (1/100gD.W./4 days)</td>
<td>PO$_4$-P (1/100gD.W./4 days)</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>day</td>
<td>4.51</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>night</td>
<td>1.14</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>whole day</td>
<td>5.65</td>
<td>9.9</td>
</tr>
<tr>
<td>2.0</td>
<td>day</td>
<td>4.06</td>
<td>9.1</td>
</tr>
<tr>
<td></td>
<td>night</td>
<td>0.98</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>whole day</td>
<td>5.04</td>
<td>17.1</td>
</tr>
<tr>
<td>8.0</td>
<td>day</td>
<td>3.93</td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td>night</td>
<td>0.99</td>
<td>12.1</td>
</tr>
<tr>
<td></td>
<td>whole day</td>
<td>4.92</td>
<td>28.1</td>
</tr>
</tbody>
</table>

Fig. 1. Relationship between nutrient concentration in the culture solution and the rate of uptake during the night to that in a whole day.
水分とカルシウムの吸収量及び吸収濃度を第5表に示した。水分の吸収量は処理区の間で差がなかった。カルシウムの吸収量はカルシウム濃度が高いほど多くかった。

カルシウムの1日平均の吸収濃度は、1 me/1区が3.5me/1、4 me/1区が5.5me/1、16 me/1区が8.4me/1であった。濃縮率は、順に3.5、1.1、0.5とカルシウム濃度が高いほど低かった。16 me/1区では昼間の吸収濃度は施与濃度よりも低く、夜間の吸収濃度は施与濃度よりも高かった。

夜間吸収率は、水分については3つの区の間で差はなかった。カルシウムの夜間吸収率はカルシウム濃度が高いほど低かった（第1図）。

実験3
水分及びリンの吸収量、夜間吸収率及びリン吸収濃度を第6表に示した。昼間の水分吸収量は3つの区の間で大きな差はなかった。しかし、夜間の水分吸収量はリンを単独で施与した区で少なかった。リン吸収量

<table>
<thead>
<tr>
<th>Ca-conc. (me/1)</th>
<th>Time of absorption</th>
<th>Rate of uptake Water (1/100gD.W./4 days)</th>
<th>Rate of Ca to water absorbed (me/100gD.W./4 days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>day</td>
<td>5.23</td>
<td>13.1</td>
</tr>
<tr>
<td></td>
<td>night</td>
<td>0.70</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>whole day</td>
<td>5.93</td>
<td>20.6</td>
</tr>
<tr>
<td>4.0</td>
<td>day</td>
<td>4.96</td>
<td>20.3</td>
</tr>
<tr>
<td></td>
<td>night</td>
<td>0.73</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td>whole day</td>
<td>5.69</td>
<td>31.4</td>
</tr>
<tr>
<td>16.0</td>
<td>day</td>
<td>5.17</td>
<td>37.0</td>
</tr>
<tr>
<td></td>
<td>night</td>
<td>0.69</td>
<td>11.9</td>
</tr>
<tr>
<td></td>
<td>whole day</td>
<td>5.85</td>
<td>48.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Time of absorption</th>
<th>Rate of uptake Water (1/100gD.W./4 days)</th>
<th>Rate of phosphate to water absorbed (me/100gD.W./4 days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaH₂PO₄ alone</td>
<td>day</td>
<td>7.19</td>
<td>16.4</td>
</tr>
<tr>
<td></td>
<td>night</td>
<td>0.70 (9)</td>
<td>11.9 (42)</td>
</tr>
<tr>
<td></td>
<td>whole day</td>
<td>7.89</td>
<td>28.3</td>
</tr>
<tr>
<td>NH₄H₂PO₄ alone</td>
<td>day</td>
<td>7.42</td>
<td>13.4</td>
</tr>
<tr>
<td></td>
<td>night</td>
<td>0.76 (9)</td>
<td>8.1 (38)</td>
</tr>
<tr>
<td></td>
<td>whole day</td>
<td>8.18</td>
<td>21.5</td>
</tr>
<tr>
<td>Enshi soln</td>
<td>day</td>
<td>7.22</td>
<td>19.2</td>
</tr>
<tr>
<td></td>
<td>night</td>
<td>1.05 (9)</td>
<td>13.4 (41)</td>
</tr>
<tr>
<td></td>
<td>whole day</td>
<td>8.27</td>
<td>32.6</td>
</tr>
</tbody>
</table>

*Rate of uptake at night to that in a whole day (%)
は昼間夜間ともリンを単独で施与した区で少なく、特にリン酸アンモニウム溶液区でその傾向が顕著であっ
た。この区では、リン吸収濃度の低下もリン酸アンモ
ニウム溶液区より大きかった。
水分の夜間吸収率は園試験区50％濃度液区が13％、
リン酸アンモニウム区とリン酸アンモニウム区がと
もに9％と、リンを単独で施与した区で水分の夜間吸
収率が低下した。リンの夜間吸収率は3つの区の間で
大きな差はなかった。
実験4
培養液に塩化ナトリウムを添加した場合の昼間各々
の養水分吸収量を第7表に示した。塩化ナトリウム濃
度が高くなるにつれ、水分、硝酸態窒素、カリウムそ
してカルシウムの吸収量が減少し、その程度は硝酸態
窒素においていちばん大きかった。さらに、硝酸態窒
素では、塩化ナトリウム添加による吸収量の減少は、
昼間よりも夜間において大きかった。しかし、リンの
吸収量は培養液の塩化ナトリウム濃度2000ppmまで
では影響を受けず、わずかに増加する傾向が認められ
た。第8表に養水分の夜間吸収率を示した。数値にや
や変動があるものの、培養液に塩化ナトリウムが添加
されることによって、養水分の夜間吸収率が低下した。

<table>
<thead>
<tr>
<th>NaCl (ppm)</th>
<th>Time of absorption</th>
<th>Rate of uptake (water : 1/100g D.W./4 days)</th>
<th>(nutrient : me/100g D.W./4 days)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Water</td>
<td>NO₃-N</td>
</tr>
<tr>
<td>0 ppm</td>
<td>day</td>
<td>4.59</td>
<td>54.2</td>
</tr>
<tr>
<td></td>
<td>night</td>
<td>0.76</td>
<td>22.0</td>
</tr>
<tr>
<td></td>
<td>whole day</td>
<td>5.35</td>
<td>76.2</td>
</tr>
<tr>
<td>1000 ppm</td>
<td>day</td>
<td>4.66</td>
<td>42.5</td>
</tr>
<tr>
<td></td>
<td>night</td>
<td>0.68</td>
<td>12.7</td>
</tr>
<tr>
<td></td>
<td>whole day</td>
<td>5.34</td>
<td>55.2</td>
</tr>
<tr>
<td>2000 ppm</td>
<td>day</td>
<td>4.29</td>
<td>36.5</td>
</tr>
<tr>
<td></td>
<td>night</td>
<td>0.64</td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td>whole day</td>
<td>4.93</td>
<td>47.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NaCl (ppm)</th>
<th>Rate of uptake at night to that in a whole day (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water</td>
</tr>
<tr>
<td>0 ppm</td>
<td>14</td>
</tr>
<tr>
<td>1000 ppm</td>
<td>13</td>
</tr>
<tr>
<td>2000 ppm</td>
<td>13</td>
</tr>
</tbody>
</table>
実験 5
第9表に培養液を循環した場合の水分及びリンの吸収量を示した。培養液の循環、つまり培養液流動の効果が水分以上にリン吸収において大きかった。吸収についても示したが、リンの吸収量が最大で35%、真夜中で33%であると報告された。
実験 6
培養液に磷酸カリウムおよび硝酸カルシウムが共存

Table 9. Rate of phosphate and water uptake by tomato plants cultured in circulated culture solution.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Time of measurement</th>
<th>Rate of uptake</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Water</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1/100 g D.W. / 6 hr)</td>
</tr>
<tr>
<td>Non-circulation</td>
<td>midday*</td>
<td>1.37 (100)</td>
</tr>
<tr>
<td></td>
<td>midnight</td>
<td>0.11 (100)</td>
</tr>
<tr>
<td>Circulation</td>
<td>midday</td>
<td>1.45 (106)</td>
</tr>
<tr>
<td></td>
<td>midnight</td>
<td>0.13 (118)</td>
</tr>
</tbody>
</table>

※ midday (9 am to 3 pm), midnight (9 pm to 3 am)
() : Relative values to non-circulation.

Table 10. Rate of phosphate and water uptake by tomato plants cultured in phosphate solution with KNO₃ or Ca(NO₃)₂.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Time of absorption</th>
<th>Rate of uptake</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Rate of phosphate to water absorbed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>water</td>
</tr>
<tr>
<td>NH₄H₂PO₄</td>
<td>day</td>
<td>4.51</td>
</tr>
<tr>
<td></td>
<td>night</td>
<td>1.14 (7)*</td>
</tr>
<tr>
<td></td>
<td>whole day</td>
<td>5.65</td>
</tr>
<tr>
<td>+KNO₃</td>
<td>day</td>
<td>4.06</td>
</tr>
<tr>
<td></td>
<td>night</td>
<td>0.98 (7)</td>
</tr>
<tr>
<td></td>
<td>whole day</td>
<td>5.04</td>
</tr>
<tr>
<td>+Ca(NO₃)₂;</td>
<td>day</td>
<td>3.93</td>
</tr>
<tr>
<td></td>
<td>night</td>
<td>0.99 (7)</td>
</tr>
<tr>
<td></td>
<td>whole day</td>
<td>4.92</td>
</tr>
</tbody>
</table>

※ Rate of uptake at night to that in a whole day (%)
考 察
水分の吸収量は培養液濃度が高いほど少なく、水分の吸収に対する培養液液面の影響が認められた。これは培養液液面が高くなるにつれて培養液の浸透ポテンシャルが低下し、水分の吸収量が阻害されるためである。しかし、水分の夜間吸収率は培養液液面の違いに関わらず8%と一定しており、培養液液面の上昇による水分吸収及ぼすストレスの影響が昼間あるいは夜間どちらに偏って強く起こることはなかった。それ故に、実験1で認められた養分の夜間吸収率の変化は水分の吸収率の変化に影響されたものではなく、培養液液面による直接的な影響を受けたものである。
50%濃度液区、100%濃度液区の養水分吸収量を培養液濃度のいちばん低い25%濃度液区の養水分吸収量を100とした相対値で表したもののが第11表である。リンの相対吸収量は、50%濃度液区は昼間が126、夜間が157、100%濃度液区は昼間が151、夜間が72である。このように、培養液濃度の上昇にもつながりリン吸収量の増加程度は昼間よりも夜間の方が大きい。それとは逆に、硝酸態窒素の場合は50%濃度液区は昼間が138、夜間が112、100%濃度液区は昼間が133、夜間が108で、昼間よりも昼間の方が窒素吸収量の増加程度が大きかった。カリウム、カルシウムでは培養液濃度が高くなると昼間の吸収量が増加するが、夜間の吸収量は反対に減少している。培養液濃度の上昇に対応する養分の昼間吸収量の変化には以上述べた3つの型が存在することがわかる。
リン以外の養分で培養液の濃度が高くなると昼間の吸収量が増加しやすいのは、昼間は夜間に比べこれらの養分の吸収が培養液濃度に左右されやすいことに原因すると考えられる。そのなかで、カリウム、カルシウムでは50%濃度液、100%濃度液が25%濃度液に比べ昼間の吸収率が多かったが、夜間の吸収はむしろ少なかった。1日全体の吸収量を測定しているだけででは、培養液濃度の影響にもなる各養分の吸収特性の変化を見い出すには充分ではない。昼間の吸収量が1日全体の吸収量に占める割合は決して少なくなく、培養液濃度の高い状態での夜間吸収の抑制傾向は、単に吸収量の多少によって培養液の施肥管理を図ろうとする考え方に対して疑問を投げかけるものである。水耕栽培において培養液濃度が高くなると、カルシウムの吸収抑制に原因する、とりわけ夜間の吸収に起因すると考えられる腐敗果（橋1988）等の生理障害が多発するのは、吸収の抑制が夜間の吸収に対して偏って強く起こることと関連があると思われる。
均一培養液である浮遊培養の性質として、以上の実験結果から次の点を指摘することができる。実際に使用されている濃度の範囲においても、濃度が高くなるにつれ、吸収されやすい養分と吸収されにくい養分に二分されることがある。培養液濃度が高くなるにつれ、硝酸態窒素とリンの吸収量は増加し、他の吸収量は増加が鈍る。硝酸態窒素とリン以外の養分では、すでに吸収の抑制が働き始めていることを夜間

<table>
<thead>
<tr>
<th>Strength of soln (%)</th>
<th>Time of absorption</th>
<th>Relative uptake</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Water</td>
</tr>
<tr>
<td>25%</td>
<td>day</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>night</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>whole day</td>
<td>100</td>
</tr>
<tr>
<td>50%</td>
<td>day</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>night</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>whole day</td>
<td>95</td>
</tr>
<tr>
<td>100%</td>
<td>day</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>night</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>whole day</td>
<td>86</td>
</tr>
</tbody>
</table>
の吸収量の減少が示されている。試験方法未定稿では濃度を高くしても、各養分に等しく吸収量の増加を期待することはできない。硝酸窒素とリンの吸収量が僅かに増加する。結果的には陽イオンの相対的な欠乏、あるいは硝酸窒素塩やリンの過剰吸収による過剰の栄養生長を引き起こしていると思われる。

根が昼夜とも高濃度の培養液に浸かっている状態では、養分吸収量の増加の程度をより明確に判断して、試験方法未定稿ではリンは硝酸窒素塩、リン、カリウム、カルシウム、マグネシウム5つの養分の中でいちばん高濃度域での吸収が行われやすい性質を有している。このことから振幅が培養液で栽培した場合に、基質の生長が旺盛であり、異常を生じさせず、抵抗力果実の肥大を促したりする等、種々の生理障害の発生を促す原因になっていると考えられる。これらのことにより、このような生育障害の発生を軽減させる意味においても、現在広く使用されている培養液の硝酸窒素塩やリン濃度を低くする方向で再検討する必要がある。

リン濃度が8me/1, 2me/1, 0.5me/1と濃度が低くなるほど、リンの吸収量は順に43％、50％、52％と高まった。リン濃度が8me/1と極端に高い培養液では、一般に高濃度の低下が大きかった。この傾向はカルシウムの場合においてもまったく同様であった。製品は水分の吸収が多いく、各養分の吸収量が養分濃度に左右されるので、リン濃度が低い場合には吸収量の減少が生じやすくなる。リン低濃度の培養液から最大限のリンを吸収するために、水の吸収、蒸散量にいらない動的的な代謝依存性の強い吸収機構を働かせるためには、そのためには夜間の吸収促進効果が必要であり、これがリン濃度条件下での夜間吸収が上昇する理由になっていると考えられる。このことは、一般に水の吸収が左右されるカルシウムにおいても例外ではない。

リン濃度8me/1の区では、1日の平均吸収量は5.7me/1で施用濃度よりも低かった。試験方法未定稿50％濃度液を使用して養分水の夜間吸収量を測定した寺田ら（1984）の一連の実験ではリンの夜間吸収濃度は10me/1前後の高い値を示していた。しかし、この様な高い濃度で施与した本実験では、日の吸収濃度4.1me/1で施用濃度の半分になった。それでも夜間は12.3me/1と施用濃度よりも吸収濃度が高かった。リン2me/1区と比較すると、リン4me/1区の日の施用濃度は57％増加しているのに対し、夜間のそれは34％と低かった。リン濃度の高い栽培液で水耕栽培されたトマトが、日の吸収濃度を50％減じても吸収量の増加程度が夜間よりも大きいことは、いかに昼間の培養液の施用濃度が吸収量に対して大きな影響を及ぼしているかがわかる。リン濃度の高い区で夜間吸収量が低くなるのは、昼間の吸収量の増加も培養液濃度に影響を及ぼし増加してしまうこと、夜間の吸収量の増加が実現することによってと言える。

カルシウム濃度を1me/1から16me/1に16倍高くしても、夜間の吸収量の増加程度はわずか1.6倍であった。昼間の吸収量の増加程度は2.8倍で、夜間の方が昼間より養分濃度の増加にともなう吸収量の増加程度が小さい。また、16me/1区と4me/1区の夜間カルシウム吸収量を比較すると、施与濃度の増加にともなう吸収量の増加が極めて少ないことがわかる。これは、トマトの水耕栽培において培養液内のカルシウム濃度を高くしても夜間の吸収量を高めることが難しいことを意味している。

リンの吸収は完全培養液に比べ、リン単独の溶液で少しは少ないことが知られている（高橋ら，1955）。試験方法未定稿で使用されているリン酸塩は、リン酸二アンモニウムで、これを単独に施与した場合でも明らかにリン吸収量の減少を起こすことから、他の養分がこの効果の吸収を助けることは明らかである。しかし、単独施与された時の夜間吸収率には大きな差は認められないので、特にリンが試験方法未定稿でリンを除く他の養分によって吸収効果が昼間と夜間で差異があるとは思えない。単独施与された場合の水の夜間吸収率は完全培養液に比べ低くなったのでに対し、リンの夜間吸収率が夜間吸収率を受ける影響が昼間と夜間に差異があると見られる。リンの昼間と夜間の吸収量の相互の関係は、水の吸収並びに他の養分の共存には左右されにくいものと考えられる。

試験方法未定稿の25％濃度、50％濃度、100％濃度の間では、培養液濃度の上昇にともない各養分の吸収量が増加し、しかもリンの増加程度がいちばん大きかった。並木ら（1973）は培養液濃度を一定範囲内で変動を試してトマトの水耕栽培を行った。その結果、試験方法未定稿の50％濃度液と100％濃度液では吸収した養分量はリンのみ100％濃度液が50％濃度液よりも多く、本実験の結果と一致している。リンが培養液濃度上昇にともなう吸収の増加が昼間よりも夜間の方が大きいことは他の養分とは異なっている。リン以外の養分では100％濃度液で昼間の吸収が増加していることも関われず、夜間の吸収量は減少している。これは、これらの養分はリンに比べ、少なくとも夜間の高濃度培養液による吸収阻害の影響を強く受けるものと思われる。

培養液全体の濃度を低くした時には、リンの夜間吸収率はわずかに低い値を示し、リン濃度のみ低下させた場合には、薄い方が夜間吸収量は高くなった。培養液全体の濃度を低くした場合とリン濃度だけ低くした
場合に、リン夜間吸収率になぜこのような違いが生じるのか。カルシウムとリンで行った2つの実験の結果から、特定養分の濃度を低くした場合にはその養分の夜間吸収率は上昇すると思われる。しかし、全体の培養液濃度を低下させた場合には、いずれの養分においても薄い培養液から養分を積極的に吸収しようとする作用が働き、吸収における抵抗作用がより強く現れるのではないかと考えられる。原試験で25%濃度培養液で硝酸態窒素、カリウム、カルシウム、マグネシウムの夜間吸収率がすべて高くなっており、リンの吸収が他の養分の夜間吸収に影響されるもののと考えられる。特にリンの吸収と抵抗しやすい硝酸態窒素の吸収の影響が大きいと考えられる。寺林ら（1987）は窒素欠損状態のトマト植物体が硝酸態窒素を盛んに吸収している際、リンの夜間吸収率を低下することを認める。

リンを単独で与えた場合には吸収量の減少が認められる。これはリンの吸収によって他養分の共存が必要であることを示している。ただし、夜間吸収率のわずかな低下をみたが、昼夜の吸収と夜間の吸収を大幅に変えるようなことはなく、しかもその影響が昼間と夜間で異なるということもない。実験の1、2、3の結果から判断すると、水準の夜間吸収率が低い時では8%、高い時で20%と大きな差があるにも関わらず、リンの夜間吸収量は40～50%限られた範囲の中にあ る。通常の栽培条件下ではリン以外のイオンや培養液濃度等がリンの夜間吸収に及ぼす影響は小さいと考えられる。

培養液に高濃度の塩化ナトリウムを添加した実験では、硝酸態窒素を除き、養分の吸収量の変化の程度が小さく、昼間吸収に及ぼす塩類ストレスの影響は明瞭ではなかったが、概して塩化ナトリウム濃度の高い区で夜間吸収率が低くなる傾向が認められた。硝酸態窒素の吸収抑制力がいちばん顕著に現れており、この場合の夜間吸収率の低下も明らかであった。少なくとも硝酸態窒素に関して限る、塩類ストレスの影響は昼間よりも夜間で大きいと思われる。塩類ストレスは根の呼吸活性を低下させる（Lambersら、1981）といわれており、根の活性に強い影響を及ぼしている。それ故に吸収における代謝過程に依存する性質の強い硝酸態窒素やリンの吸収が、このようなストレス下で阻害されやすい。しかし、本実験では、硝酸態窒素の吸収は著しく阻害されたのに対して、リンの吸収は減少しなかった。処理期間が4日間と短期間であったことから、トマト植物体への代謝阻害による影響は少なく、培養液における塩化ナトリウムと硝酸態窒素及びリンとの拮抗作用の違いが現れたものと思われる。

リンは培養液に含まれる種のイオン（多量要素）のなかでは特に硝酸態窒素の吸収と深い関係があるといえよう。しかし、リンの吸収が培養液の水分ストレス、いわゆる高塩類障害によって昼夜の吸収量が低下して影響を受けることは極めて少ないといえよう。

土栽培においては、根による養分の吸収と根圏付近の養分の拡散速度の低下によって、根の表面に養分濃度の低い層が形成される（Lewis・Quirk, 1967）。しかし、この現象は土栽培によっても、水栽培の培養液管理においても問題とされなければならない。特に培養液の抵抗がないと吸収が十分でなく、培養液が比較的長い時間静置していると、養分の吸収が阻害される。Haiら（1966）は低濃度のリン酸溶液を静置状態から時率1800mlまでの速度で連続流動させてイネを水栽培し、流速が大きいほどリン酸の吸収が多くなることを示した。培養液の循環によって養分の吸収が促進される大きな原因は、ひとつにはこの低濃度層の破壊によって根表面付近の溶存酸素濃度及び養分濃度の低下を防ぐことにあると考えられる。

この溶存酸素及び養分濃度の低い根表面付近の層が昼間と夜間でどちらかより強く形成されているか、またその影響が昼間と夜間でどちらか大きくは知られていない。さらに、培養液の抵抗は根のフィードベースへの養分の浸入を助けたり、物理的な刺激あるいは根表面の老廃物や分泌物質を除去する等の効果がある。

昼間と夜間ともに培養液流動によって34%程度に吸収量が増加し、昼間の間で循環の効率に差がなかったことから、根が根表面付近に溶存酸素を保持し養分の低濃度層が形成されていたとしても、昼間と夜間でその影響が異なたとはいいえな。リン濃度に限定した場合、リンは培養液においては昼間に対して高濃度で吸収されているため、低濃度層の形成が昼間よりも強く起こっていると考えられる。よって、夜間の培養液循環によるリン吸収量の増加が昼間の培養液循環よりも大きくなるものと想像される。しかし、培養液循環によるリン吸収は促進させる効果の程度には昼と夜の間で差がなかった。この原因として、第1に固形物培養液のリン濃度がこのような低濃度層の形成にはほとんど高いことがあげられる。開場の土壌溶液中のリン濃度に比べ培養液のリン濃度は、10倍近い100倍の高い濃度を示すとされている（加藤ら、1985）。このようにリン濃度の高い培養液では根表面付近の低濃度層の形成が実証問題になる場面は少なく、ここで認められた循環の影響はそれ以外の要因によるものと思われる。根への積極的な酸素供給が促進された効果が大きいと考えられる。この培養液の循環という操作によってリンの吸収が昼間夜間で差がなく増加したことから、少なくともリン吸収に影響を及ぼす根表面付近の溶存酸素濃度、リン濃度が昼間にあるとは夜間に偏って影響を及ぼしているのような
ことではないと思われる。

リンが多価のカルシウムやマグネシウム等の陽イオンによって、吸収が促進されることが知られている。Franklin (1969) はオオムギとトウモロコシの切断根が、多価陽イオンの溶液に一定時間置かれることによりリンの吸収が明らかに増加することを示した。このような多価陽イオンによるリン吸収促進作用は、根の表面への接近及び置換作用に対して抑制的に働く根表面の負電荷を中和化することによるものと考えられ、その効果は多価の陽イオンであるほど大きくなる。本実験では硝酸カリウムに比べ硝酸カルシウムの方がリン吸収量を促進する効果が大きかった。しかし、その効果の程度に昼間と夜間との間で差がなく、リンの夜間吸収と多価の陽イオンとの関連は明らかではなかった。根表面の荷電が養分の吸収、とりわけ陽イオンの吸収に対して強い影響を及ぼしていると思われるが、本実験の結果に関する限り、この多価陽イオンがリンの吸収に対して昼間と夜間で影響の強さが異なることは認められなかった。実際の栽培条件下においては、リンの昼間と夜間吸収がこれらの多価陽イオンによる直接的な働きによって左右されている可能性は低いものと思われる。

summary

The aim of the present work has been to examine aspects of phosphate uptake during the day and the night under various conditions of culture solution.

Phosphate uptake increased as the total salt concentration was raised from 25% to 100% strength of Enshishoho culture solution.

Phosphate URN (rate of uptake at night to that in a whole day) was lowest with 25% strength of the solution and highest with 50% strength.

Phosphate URN decreased, when phosphate concentration only was raised. It was also the case with calcium uptake and calcium concentration in the culture solution.

Phosphate URN was not changed regardless of increase nor decrease in water or phosphate uptake, by feeding phosphate solution only, or addition of monovalent cations or NaCl to the culture solution.

The present work has made it clear that phosphate URN is influenced solely by phosphate concentration, and not by water or phosphate uptake under various conditions of the culture solution.