各種の麹納豆中に含まれる総カルシウム、遊離カルシウム、りん酸、フィチン酸および硝酸の分析

大槻 耕三・久保山 晶子・佐藤 健司・中村 考志

Analyses of Total and Free Calcium, Phosphate, Phytate and Nitrate in Various Koji Nattoes

KOZO OHTSUKI, AKIKO KUBOYAMA, KENJI SATO and YASUSHI NAKAMURA

Abstract: Analyses of total and free calcium, total and free phosphate, phytate and nitrate contents in various Koji Nattoes, Shio-natto, Hama-natto and Daitokuji-natto, were carried out. Itohiki-natto, Rice-Koji Miso, Hattyō Miso, Kinzanji Miso and Kinako were also analysed as samples for comparisons.

Shio-natto had an appearance of Itohiki-natto, and was also alike to Koji Miso. Hama-natto and Daitokuji-natto had less phytate content than soybean, so that these Koji Nattoes are good to take nutritional minerals such as calcium, magnesium, iron and zinc for human nutrition.

（Received September 10, 1999）

I 緒言

玄米などの玄穀類や大豆をはじめとする豆類は古米、日本や東南アジアでは重要な食糧として広く栽培され各種の食品に利用されてきた。これらは通常の状態で水分含量が15.5～12.5％程度である。腐食させることなく室温に長期間にわたり保管できるという大きな利点がある。

しかしながらこれらはイソノートール脱糖酸エステルであるフィチン酸を多量含むことが栄養学上の問題とされてきた1)。

フィチン酸は、各種のミネラル、例えばカルシウム、マグネシウム、銅、亜鉛などをはじめ、多価の金属イオンと結合し、不溶性の塩を形成し、いわゆる栄養学的には不溶態のミネラルにしてしまう栄養物質であると考えられている。このフィチン酸を何らかの方法で取り除くことが、この20～30年代、種々の食品加工法の改良でなされて来た。米については精白することによりほとんどのフィチン酸を除去することができるが、豆類については機械的な除去法では不可能であるため、主に発酵法で達成されている。大豆製品について見ると2)，乾燥大豆は1～2.3％のフィチン酸を含み、古来から使用されていている豆乳は1.7～1.8％（乾物で）、その凝固加工品の豆腐は乾物量あたり1.5～2.9％、おからは0.5～12％もフィチン酸を含有している。これに対して、リソプス菌（Rhizopus oligosporus）を使用して発酵法により加工されているインドネシア産のテンペでは発酵中に生成するフィターゼによりフィチン酸が分解され3)乾燥品あたり0.7～1％程度まで減少しており、ミネラルの利用効率からは大きな改良が得られている4)。

本研究では大豆加工品の一種であり、穂宗の日本の伝統食品である納豆発酵を利用した酸納豆の注目した日本古来の伝統食品の利用におけると比較を行った。この報告で使用した3種の酸納豆の外観を写真1に示す。酸はAspergillus oryzaeであり、発酵のpHも酸性で行われる。粘引き納豆は、枯草菌のBacillus nattoが用いられていて、発酵は多分アルカリ性の側で行われる。Table1に示したように本研究では数種の酸納豆を用いたが、塩納豆は、粘引き納豆製造後に、塩と醤油を加えさらに3ヶ月ほど熟成させたものであるので、酸の性質と粘引き納豆の性質を合わせものであり、味も粘引き納豆のような無味ではなく、酸の甘味をもっていて保存性も食塩添加により増している。本研究では
Table 1. Koji Natto and Soybean Product for Chemical Analysis

<table>
<thead>
<tr>
<th>Koji Natto</th>
<th>Appearance</th>
<th>NaCl conc.</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shio-natto</td>
<td>Yellow Brown</td>
<td>41.1%</td>
<td>6.80</td>
</tr>
<tr>
<td>Hama-natto</td>
<td>Dark Brown</td>
<td>27.6</td>
<td>4.74</td>
</tr>
<tr>
<td>Daitokujii-natto</td>
<td>Black</td>
<td>31.5</td>
<td>6.60</td>
</tr>
<tr>
<td>Itohiki-natto</td>
<td>Yellow Brown</td>
<td><0.1%</td>
<td>7.88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soybean Product</th>
<th>Rice-koji Miso</th>
<th>Yellow White</th>
<th>9.5</th>
<th>5.18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hattyo Miso</td>
<td>Dark Brown</td>
<td>28.4</td>
<td>5.04</td>
<td></td>
</tr>
<tr>
<td>Kizanjui Miso</td>
<td>Brown</td>
<td>5.6</td>
<td>5.04</td>
<td></td>
</tr>
</tbody>
</table>

(2) 試料の前処理

各種試料はいずれも固形であるので、試料1に対し蒸留水4を加え（重量比）乳剤でよく研磨し、その一部を使用して分析に供した。固形物が妨害する場合は乾燥したアドバンテック製脱紙No.2を使用して約30分か、もしくは遠心分離によって上清液を分析に供した。

(3) 分析方法

(i) カルシウムの分析法

グリオキサールビス（2-ヒドロキシカルボン酸）をカルシウム特異反応薬として使用し、分光光度計で比色定量した。

(ii) イン酸の分析法

従来法のイン酸吸光光度法では、食品中の成分がミオイン酸交換試験と反応し不溶として分析不可能になるが、Ames法ではこの妨害反応がなく、今回の実験には適した方法であった。

(iii) イン酸の分析法

陰イオン交換樹脂カラムを用いるイン酸吸光光度法により分離後、塩化第2鉄とスルホサリチル酸による比色法によりイン酸を分析定量した。

(iv) 食塩濃度の測定

上記の蒸留水で50倍に希釈した試料を適当量ビーカーにとり、塩鶏産製SH-7型食塩濃度計で測定した。これはナトリウムイオン電極を使用している方式なので、電気伝導計方式よりも正確である。

(v) 硝酸イオン濃度の測定

塩鶏を蒸留水で適当に希釈、冷凍した液を、塩鶏産製C-141型硝酸イオンメーターで測定した。

(vi) pHの測定

上記、蒸留水で50倍に希釈した試料を、塩鶏産製F-8型pHメーターで測定した。

(2) 試料の前処理

各種試料はいずれも固形であるので、試料1に対し蒸留水4を加え（重量比）乳剤でよく研磨し、その一部を使用して分析に供した。固形物が妨害する場合は乾燥したアドバンテック製脱紙No.2を使用して約30分か、もしくは遠心分離によって上清液を分析に供した。

(3) 分析方法

(i) カルシウムの分析法

グリオキサールビス（2-ヒドロキシカルボン酸）をカルシウム特異反応薬として使用し、分光光度計で比色定量した。

(ii) イン酸の分析法

従来法のイン酸吸光光度法では、食品中の成分がミオイン酸交換試験と反応し不溶として分析不可能になるが、Ames法ではこの妨害反応がなく、今回の実験には適した方法であった。

(iii) イン酸の分析法

陰イオン交換樹脂カラムを用いるイン酸吸光光度法により分離後、塩化第2鉄とスルホサリチル酸による比色法によりイン酸を分析定量した。

(iv) 食塩濃度の測定

上記の蒸留水で50倍に希釈した試料を、適当量ビーカーにとり、塩鶏産製SH-7型食塩濃度計で測定した。これよナトリウムイオン電極を使用している方式なので、電気伝導計方式よりも正確である。

(v) 硝酸イオン濃度の測定

塩鶏を蒸留水で適当に希釈、冷凍した液を、塩鶏産製C-141型硝酸イオンメーターで測定した。

(vi) pHの測定

上記、蒸留水で50倍に希釈した試料を、塩鶏産製F-8型pHメーターで測定した。

III 結果および考察

本研究で使用した鰹鶏はPhoto 1に示す。またその他の大豆製品も合せて性質をTable 1に示した。塩鶏については他の鰹鶏に比べて食塩濃度がわずか、またpHも中性に近いものであって、外観もほとんど塩引続鶏に似ている。しかし鰹と塩鶏を加へて短時間熟成させたものである。なお東北各県の地域には塩鶏が支配的に飼育されているものもある。

鰹鶏の品種の対照として、一般に広く食される塩引続鶏と、米味噌や八丁味噌も同時に分析し、比較検討した。
け上多くなっている。加工品では糸引き納豆はカルシウムの遊離率が13%と低く、これはフィチン酸と結合してい、不給態となっているためと考えられる。これに対し、麹菌により発酵させた塩納豆、浜納豆、大徳寺納豆は22～27%の遊離率で味噌類と同じかそれ以上であった。これは麹菌に含まれるフィーターゼによりフィチン酸が分解されたことによるものであろう。10)

また、総リン酸については、乾式灰化したものを一定量に溶かしモリブデン酸法により定量した。遊離のリン酸は糸引き納豆やキナコに少なく、発酵試料に多い。（Table 2）また発酵によりフィチン酸が減少することとは明らかに示されている。特にこのものは食品に含まれる微量の必須ミネラル、例えば亜鉛、鉄、マグネシウムなどを通常の食事で補給している時には重要である。フィチン酸が多ければ、亜鉛や鉄やマグネシウムはたちまち不給態になるであろう。

硝酸イオンはこの麹による発酵により顕著に増加していることが見られる。糸引き納豆では120mg％の低いレベルであるが麹納豆では140～305mg％にも増えている。同じ麹発酵の味噌類も同傾向である。特に金山寺納豆は根菜類を加えていないため、一部の根菜に多量の硝酸イオンが含まれていることが知られているが10)、これも硝酸イオンが多くなる原因の一つと考えられる。

IV. 要約

納豆（塩納豆、浜納豆、大徳寺納豆）中の全カルシウム量、遊離カルシウム量の分析、および全琉酸、遊離琉酸、フィチン酸、硝酸イオン含量の定量を行った。これに比較するために糸引き納豆、米味噌、八丁味噌、金山寺味噌の分析・定量を行った。塩納豆は外観はしばしば糸引き納豆に近いものであるが、味噌の特徴をもって

Table 2. Chemical Composition of Koji Natto and Soybean Product

<table>
<thead>
<tr>
<th></th>
<th>Total Ca</th>
<th>Free Ca*1</th>
<th>FCa ×100</th>
<th>NO3-conc*2</th>
<th>Total P</th>
<th>Free P*3</th>
<th>E.P.T. ×100</th>
<th>Phytic Acid*4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shio-natto</td>
<td>90mg％</td>
<td>20mg％</td>
<td>22％</td>
<td>140mg％</td>
<td>129.5mg％</td>
<td>73.5mg％</td>
<td>56.5％</td>
<td>0.24％</td>
</tr>
<tr>
<td>Hama-natto</td>
<td>110</td>
<td>25</td>
<td>23</td>
<td>280</td>
<td>333.6</td>
<td>256.8</td>
<td>77.0</td>
<td>0.01</td>
</tr>
<tr>
<td>Daitokuji-natto</td>
<td>110</td>
<td>30</td>
<td>27</td>
<td>305</td>
<td>479.1</td>
<td>261.5</td>
<td>54.6</td>
<td>0.14</td>
</tr>
<tr>
<td>Inohiki-natto</td>
<td>90</td>
<td>12</td>
<td>13</td>
<td>120</td>
<td>256.5</td>
<td>68.0</td>
<td>26.5</td>
<td>0.79</td>
</tr>
<tr>
<td>Rice-Koji Miso</td>
<td>100</td>
<td>20</td>
<td>20</td>
<td>240</td>
<td>136.1</td>
<td>138.5</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>Hattyo Miso</td>
<td>150</td>
<td>30</td>
<td>20</td>
<td>280</td>
<td>191.8</td>
<td>159.2</td>
<td>83.0</td>
<td></td>
</tr>
<tr>
<td>Kinzanji Miso</td>
<td>200</td>
<td>40</td>
<td></td>
<td>290</td>
<td>147.2</td>
<td>132.3</td>
<td>89.9</td>
<td>0.19</td>
</tr>
<tr>
<td>Kinako</td>
<td>250</td>
<td></td>
<td></td>
<td>610.3</td>
<td>247.2</td>
<td>40.5</td>
<td>1.95</td>
<td></td>
</tr>
</tbody>
</table>

*1. Determined by a colorimetric method.
*2. Determined in a NO3− ion-meter.
*3. Determined by a colorimetric method.
*4. Determined by column-separation & colorimetric method.
いる。

浜納豆、大徳寺納豆は発酵によりフィチン酸含量が減少しており、硝酸含量は味噌類と同程度であった。
これらの結果から麹納豆は米引麹納豆よりカルシウムをはじめZn、Mg、Feなどの利用効率を改善しているものと考えられる。

本研究は平成11年度文部省科学研究費基盤研究（C）の援助によって行われた。

文献

1) 相田浩，上田誠之助，村田裕久，渡辺忠雄，アジアの無塩発酵大豆食品，STEP（1985）
4) 渋谷直美，（河端信，佐藤健司，大槻耕三），京都府大，生活科学部食学科卒業論文（1993）
5) 荒木俊江，岡本淳子（河端信，佐藤健司，大槻耕三），京都府大，生活科学部食学科卒業論文（1994）
6)　鈴木正己，平野四郎，無機比色分析，共立出版（1973）
9) 岡部昭二，化学と生物，15巻，6号，p352（1977）